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Calculus 2c-10 Preface

Preface

In this volume I present some examples of napla calculus, vector potentials, Green’s identities, curvilin-
ear coordinates , Electromagnetism and various other types, cf. also Calculus 2b, Functions of Several
Variables. Since my aim also has been to demonstrate some solution strategy I have as far as possible
structured the examples according to the following form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.
I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of A I shall either write
“and”, or a comma, and instead of V I shall write “or”. The arrows = and < are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
15th October 2007
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Calculus 2c-10 Nabla calculus

1 Nabla calculus

Example 1.1 Let 'V denote a vector field, which is both divergence free and rotation free, and let e
be a fixed unit vector. We consider also the following fields,

F=—-e-V, W=V xe, U=—-vF, T=xv xW.
1) show that

vV X (Vxx)=V+ (V- x).

2) Show that T is the same vector field as U, and that this field also is both divergence free and
rotation free.

A Nabla calculus.
D Just exploit the assumptions,
divV=y-V=0 and rot V= xV =0,

and the rules of differentiation of products.

Today’s job market values ambitious, innovative, perceptive team players. Swedish
universities foster these qualities through a forward-thinking culture where you’re
close to the latest ideas and global trends.
Whatever your career goals may be, studying in Sweden will give you valuable
Swedish Institute ~~ skills and a competitive advantage for your future. www.studyinsweden.se
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Nabla calculus

I 1) We shall use the following well-known rule of calculation

VX (VXW)=(W-7)V-W(7-V)—(V-7)W + V(7 W)

with W = x, thus

Vx(Vxx) = (x-v)V-x(V-V)=(V-v)x+V (V- x)

= (x-v)V-0—(V-v)x+3V

= V+(x-v)V=-(V-v)x+2(V-y)x
= V4 (x-v)V+(V-y)x

= V+4+v(V-x),

where we have used that

0 0 0
(VV)X: {V1—+V2—+V3—}(337y72):(VhVQ,VS):Va

ox Jy 0z

and that
V(V-x)=(V-v)x+(x-v)V.

Consider in particular T and put W = x. Then

T = YxW=vyx(Vxe)
(e- V)V —e(V-V)=(V-v)e+V(v-e)
(e-V)V-0-0+0=(e-v)V
(e-V)V+(V-v)e=v(e V)=-vF=U,

and the first claim is proved.

Since T = U = — 17 F' is a gradient field, is is rotation free,
VUXxT=—-—yxyvF=0.
Since T = U = 57 x W is a rotation field, is is divergence free:

v - T=v-vxW=0.

Example 1.2 Let f be a C'-function in r (= /22 +y2 +22). We shall also (cf. the short hand
notation in connection with the chain rule) consider f as a composed function f(r(xz,y,z)), where

(x,y,2) # (0,0,0).

1) Express 7 f by the derivative ' and x.

2) Then set up formule for 7 x (x f) and for 7 - (x f).

3) Find the integer n, for which <7 - (r"x) = 0.

A Nabla calculus.

D Just follow the guidelines.
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Nabla calculus

I We shall of course always assume that r» # 0. Then

g (O O or ,(wz),lx
VT = 0x’ oy’ 0z) \r'r’'v) r

1) We get by the chain rule,

_ / or / or / or _pt _ f/(’l")
i = (10 g0 g 05 ) = 1o vr=L0x
2) A direct computation gives
e, ey e,
0 0 0
VX (xf)= e oy 7
zf(r) yflr) =f(r)
= (z flq(f) y—y fly) Z, @ f;(j‘) z2—z f’7(1r) x,y f’ir) r—x f’i?") y) =(0,0,0).
A variant is
e, €y e, €y ey €,
_ o 90 0 | _|0f(r) 9f(r) 9f(r)
vxxf) = Ox dy 0z N ox dy 0z
zf(r) yflr) =zf(r) x y z
= vfxx:@xxx:ﬂ
Furthermore,
B 0 of
vexf) = %>

370)+x- v =370+ T x x

3f(r)+rf(r).
3) Choose f(r) =r". Then it follows from the above,

V- (r"x) =3r" +nr" = (3 4+ n)rm.

(f(r)era—x) + (f(r)+yg—£> + <f(7")+z
f(r

When 7 # 0, this is equal to 0 for n = —3. REMARK. In general, /- (x f(r)) = 0 generates the

differential equation

rf'(r)+3f(r)=0.
Then by separation of the variables,

r ]

and the complete solution is obtained by an integration,

f(ry=0C-r73, r#0, where C € R. O

)
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Calculus 2c-10 Nabla calculus

Example 1.3 Let a be a constant vector, and let f be a C'-function in one variable. We define

9(x) = f(a-x).

1) Express the gradient 7g by the derivative f’.

(Use one of the special cases of the chain rule).

2) Let also 'V be a gradient field, and let k = 3. Show that the vector 7 x (gV) is perpendicular to
both a and V.

A Nabla calculus.
D Just compute.

I1) Ifa=(ay,...,ax)and x = (z1,...,xp), then

thus

dg Y

3—xj = f'(a-x)aj,
hence

vy =f'(a-x)a.

2) If V is a gradient field, then there exists a function F, such that V = sy F. Hence,

VXx(@V) = (Vg xV+gvxV
= flla-x)axV+ fla-x) v x(VF)
= flla-x)axV+0
fla-Vv,

which shows that 57 x (¢ V) is perpendicular on both a and V.

Example 1.4 Show the formula
20vf) (v x (fV)) = (v xV)-v(f?).
A Nabla calculus.

D Just compute.
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Calculus 2c-10 Nabla calculus

I We get straight away,

2V f)- (v x(fV))

__(0f of of 9 9 9 9 9 9
=2 (LAY (v W), ) = LUV ) = (1)
_,0f [Of ov. of v,
At AGEE A
of (of ovy Of ov,
A L o
of (0f ov, of oV,
+2&{55n+f5;—5§%—f8y}
o) fov. oV, af?) [oV, oV, +(9(]“2) ov, 0V,
SR R R S b T A b

=v(f?) - (v xV).

www.job.oticon.dk
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Calculus 2c-10 Nabla calculus

Example 1.5 Let V be a C' vector field in the set A S R3. Show that if there exists a C' function
g: A— R\ {0}, such that gV is a gradient field in A, then

V- (yxV)=0
in the set A.

A Nabla calculus.
D Start by analyzing the assumption. Compute 7 x V by means of the rules of calculations.

I The assumption assures that there exists a C? function F, such that
. 1
gV =vyF, ie. V=—-—xyF=hvF,
g

where h: A — R\ {0} is C!, because g(x) # 0. Then
vxV = yx(hyF)
= (Vh)xVF+hyxyF
= (vh) x VF, [the rotation of a gradient is 0].

Now, W7 F is perpendicular to (7h) X (VF), hence

V- (vxV)=hvyF {(vh)xvF}=0.

Example 1.6 Let o be a constant. Find <7(r®) and 7%(r®).

A Nabla calculus.
D Just compute.
I When r # 0, then

1
- ; (SC, y7Z)7

vr

hence by the chain rule,

2

L gr=ar*?(z,y,2) =ar* ?x.

V() =ar

By taking the divergence we get

v (r®) V() =v-{ar % (z,y,2)}
= OZ(O(—2)’I"0474 (J;,y,z) ! (x,y,z)—|—3ara72
ala—2)r* "t r? 4 3aro?

= ala+1)r“2

Download free books at BookBooN.com
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Calculus 2c-10 Nabla calculus

Example 1.7 Let e be a constant unit vector. Show that
e {v(V-e)-vx(Vxe}=v-V.
A Nabla calculus.
D Just compute.
I We get by means of the rules of calculation,
e {V(V-e)— v x (Vxe))
=e-{[(e-V)V+ex (Y x V)+(V:V)e+V x (v x e)]-v x (V x e)}
{le- V)V+[ex (v xV)]-vx(Vxe)}
H{le-V)V-vx(Vxe)+e-[ex(vxV)
{le-v)V-lle-V)V-e(V - V)=(V-v)et+tV(V-e)]}+0

qgmm
2
g
=

+

o —

This formula can of course also be written in the form

e-{grad(dive) —rot(V x e)} =div V.

Example 1.8 Let a be a constant vector. For x # 0 we consider the fields

a--X a X X
Ve =fpE W= e

Show that
VXW=-—-yU
A Nabla calculus.

D Just compute by using the rulse of calculation and the result of Example 1.6.

I Clearly, U and W are C* for x # 0. Put r = ||x||. Then by Example 1.6,
v(r®) = ar* ?x for x # 0.
Then we shall use the following result from Linear Algebra,

xx(axx)=(x-x)a—(a-x)x=r’a—(a-x)x.

Download free books at BookBooN.com
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Calculus 2c-10 Nabla calculus

Applying these preparations we get

VXxW = yx{ri3axx)} definition of W
= (vr ) x(axx+r3 yx(axx) rule of calculation
= —3rPxx(axx)+r3yx(axx) Example 1.6
= =3r?{rfa—(a-x)x}+7r? v x(axx) Linear Algebra
3 3a- 1
= —3 a+ % x+ T—S{O—O— (a-v)x+a(v-x)} rule of computation
3 3 1 :
= —3atx (a-x)x+ 3 (—a+3a) computation
p— 1 1
= — 52 + 5 (a-x)x, reduction,
and
VU = v (r3(a-x)) definition of U
3 1 .
= (a-x)v (r?)+ 3V (a-x) rule of calculation
3 1
= (a-x)- 5 X +r—3a Example 1.6 and 7/ (a-x) = a.

It follows by a comparison of these two expressions that
VXW=—-yU.

This can also be written
rot W = —grad U,

where U and W are given above.

Example 1.9 Consider the composite vector function
V) =Uw), w=f(x).

Find an expression for x7 -V and 57 x V.

A Nabla calculus.

D Just compute.

I In general,

ov; 0(Ujof) dU; 0Of _
dx;  Ox;  dw Ox;’ w= )

Download free books at BookBooN.com
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Nabla calculus

When we change notation (1,22, 23) = (x,y, 2), it follows that

of

VeV =) Uiw) 5= =vf-U(f(x),
. i
and
ULw) G - Uyt 5 o o e
= U;(w)g—ﬁ—U;(w)% = % % % =v.f xU'(f(x)).
AT SATE S B
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Calculus 2c-10 Nabla calculus

ALTERNATIVELY, a more sophisticated reasoning is the following,

e, ey e, e, ey e,
_ o o |_| of of  of |_ /
VXV = Ox Oy 0z | Ox Oy 0z = VI xU(f(x))-
Uof Uyof U.of | |Ulof Ulof Uz

Summarizing we obtain the results

V- (Uof(x)=vfx) U=(f(x)) and v x(Uof(x))=vf(x) xU(f(x))

Example 1.10 Given a C' vector field V and a C? scalar field f with the following property:
The vector V is at each point (x,y, z) perpendicular to the level surface of f through the point (x,y, z).
Prove that V - (7 x V) = 0.

A Nabla calculus.
D Analyze the assumption. Then find a relation between f and V. Finally, compute V - (7 x V).

I Since both 7 f and V are perpendicular to the level surface, they are proportional at each point.
Hence, there exists a function g, such that (usually)

(1) V(z,y,2) = g(x,9,2) v f(2,9,2).
When 7 f # 0, then clearly g is os class C''. Thus, when 7 f # 0, then
VXV =vux(gvf)=(v9)x(Vf)+g9(vxvf)=(vg) x(Vf)+0.
Since v/ f is perpendicular to \yg X V/ f, we get
Ve (vxV)=gvfA{vgxvf}=0.

If 7 f =0, then (1) does not necessary hold. However, if (1) holds, the relation is trivial.

Now assume that (1) does not hold, i.e. V(z,y,2) # 0 and v/ f(x,y,z) = 0. We shall then use a
continuity argument:

Since f has level surfaces, we must have v/ f # 0 arbitrarily close to (z,y, z), and it follows from
the above that V - (\7 x V) = 0 at these points. This relation is continuous, so it follows by a
continuous extension that V - {57 x V} = 0 also is valid at points, where 5/ f(z,y, z) = 0.

Example 1.11 Show by means of Gaufl’s theorem that for any closed surface F,

/ndS:O.
f

A Gauf}’s theorem in its operator version.

D Insert the obvious into Gaufy’s theorem in its operator version.

Download free books at BookBooN.com
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Calculus 2c-10 Nabla calculus

I Let F be the boundary of the domain 2. Then by Gaufl’s theorem in its operator version,

/deQ:/ nDdS:/nDdS.
Q o0 F

If we replace (0 we 1, it follows that

[ nas= [ g1a0= [ oan—o.
F Q Q

Example 1.12 Find the divergence of the vector field
V =(vf) x(vg)

[Cf. Example 2.3.]

A Nabla calculus.

D Just compute.

I The rotation of a gradient is 0, i.e. every gradient field is rotation free. Hence

Vo (Wfxvg)=(xvf)vg—(Vxvg) - vf=0-0=0.

Example 1.13 Consider the vector field V : R? — R3 given by
V(z,y,2) = f(z,y) e,
which also satisfies
Vx(vxV)=aV,
where « is a constant. Find a differential equation which has the function f as one of its solutions.
A Double rotation.
D Compute the left hand side.

I Tt follows from V(z,y,2) = f(z,y) e, that

e, e e,
0 0 0
VXV= or By 72 Z(f_,/ﬁ—fg/mo)

and

e, € e,

0
VX(VXV): % a_y & :(Oyoa_fmv_fyy):(anav2f)a

Download free books at BookBooN.com
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Calculus 2c-10 Nabla calculus

and
aV = (O’O’af(x7y))'
Then from 7 X (7 x V) =a'V,

—V2f=af or YV f4+af=Af+af=0.

Example 1.14 Let V' denote the volume of a domain Q) in space with the outwards unit normal vector
field n, and let a be a constant vector. Find

1

— n x (x xa)ds.
V | ( )

A Nabla calculus.
D Apply a variant Gaufl’s theorem and use the nabla calculations.

I By a variant of Gaufi’s theorem,

/ ndeS:/vadQ.
aQ Q

Put V =x x a. Then

1 1
= n x xxadS:—/vx x x a)dS.
7L omxexa)ds =g | v (exa)

Then by a rule of calculation,

VXx(xxva) = (a-v)x—a(v-x) - (xV)a+x(vV-a)

= (a-V)x-a(v %) 040

0 0 0
((Zl%—f-aga—y-‘ra:g&) (,y,2)—a-(1+1+1)

= a—3a=—-2a,
which is a constant. Thus by insertion,

1 1
— nx(xxa dS:—/ —2adS = —2a.
V o ( ) v V(

ADDITION. For completeness we here prove the variant of Gauf3’s theorem, which is applied above.
First note that the usual version of Gaufy’s theorem can be written

/ n-WdS:/v~WdQ.
o0 Q

Download free books at BookBooN.com
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Calculus 2c-10 Nabla calculus

Choose W =V x b, where b is any constant vector. Then

(2) /aQn-(be)dS=/ﬂv-(V><b)dQ.

The geometric interpretation of n - (V x b) is that it is equal to the (signed) volume of the
parallelepiped defined by the vectors n, V and b. (This simple result is also known from Linear
Algebra).

The same interpretation is true for (n x V) - b (with the same sign, because the sequence of the
vectors is not changed), thus

n-(Vxb)=(nxV)-b.
Since b is constant, it follows by a rule of calculation,

V- (Vxb)=(yxV)-b—(yxb-V)=(yxV)-b.

By inserting these two results into (2), we get

/aQ(nxV)-de:/Q(va)-bdQ.
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Calculus 2c-10 Nabla calculus

Since b is a constant vector, it follows by a rearrangement,

{/ ndeS—/vadQ}~b:0.
o0 Q

Now, 0 is the only vector, which is perpendicular to all vectors, thus the first factor must be 0,
and we get by another rearrangement.

/ ndeS:/vadQ,
o0 Q

and the variant of Gauf}’s theorem has been proved.

Example 1.15 Let V, W be vector fields in the space which also depend on time t and satisfy the
equations

oV

va:aa—W va:—ﬂﬁ,

ot ’
where o and (B are constants. Show that the vector field

oV oW
U:BVXE_FO[WXW

and the scalar field
=8V -yxV+aW. .y x W

satisfy the differential equation

of
VU—I_E_O

(An equation of this type is often called a continuity equation or a preservation theorem).
A Continuity equation.

D Nabla calculus.

0 0
I Since e is a differentiation with respect to a “parameter”, where can interchange e with any of
the operators v/, /- and v/ x. Thus

of oV oV OW oW
5 = BW~(VXV)+ﬂV~<VXW)+O¢W~(VXW)+OLW~<VXW)
= _(VXW)'(VXV)‘Fﬁv'(VX%—Y>+(VXV)-(VXW)+O¢W-<V><88—Vtv>
ov OW

Download free books at BookBooN.com
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Calculus 2c-10 Nabla calculus

By using this rule of calculation we get similarly,

A% oW
v-U = Bv~(VxW>+av~(wa>

ov ov A% A%

B _(vxv)_(vxw)_ﬁv_(an_v)+(va).(va)—aw.(vxaﬂ)

ot ot
ov OW
- _BV'<VXE>_‘”W'(VXW>

Finally, by adding these expressions we get

of

o
Qacha?

it’s an interesting world

Get under the skin of it.

Graduate opportunities
Cheltenham | £24,945 + benefits

One of the UK’s intelligence services, GCHQ’s role is two-fold:

to gather and analyse intelligence which helps shape Britain’s
response to global events, and, to provide technical advice for the
protection of Government communication and information systems.
In doing so, our specialists — in [T, internet, engineering, languages,
information assurance, mathematics and intelligence — get well
beneath the surface of global affairs. If you thought the world was

an interesting place, you really ought to explore our world of work.

= www.careersinbritishintelligence.co.uk

T0P 100 [

-
) INVESTORS )

&

Applicants must be British citizens. GCHQ values diversity and welcomes applicants from

ik all sections of the community. We want our workforce to reflect the diversity of our work.

Download free books at BookBooN.com

20


http://bookboon.com/count/pdf/346359/20

Calculus 2c-10 Vector potentials

2 Vector potentials

Example 2.1 Prove in each of the following cases that the given vector field V : R3 — R? is diver-
gence free. The find a vector potential W : R® — R3 such that V = 57 x W. (We may not necessarily
consider the points where xyz = 0).

1) V(z,y,z) = (cosh(z?), cosh(z?), cosh(y?)).
2) V(z,y,2) = (2%y + 2,2y + 2, —4wyz).
3) V(z,y,2) = (vz,yz, —22).

1 1 1
Vv = .
4) (m,y,z) <1+y27 1+22’ 1+x2>

5) Vg, 2) = (Sinz7 sinac7 siny)

z x Y
6) V(z,y,z) = (expz,y expx,—2z expx).
A Vector potential.

D Clearly, the domain R? is star shaped. First prove that the field is divergence free. Then compute

1
U(x) :/ tV(tx)dt
0
and
1 1
W(x)=U(x) xx = —x X / tV(tx)dt = / V(tx) x (tx)dt.
0 0
Finally, check the result, i.e. show that
vVXxW=V.

I 1. Since each V; does not depend on x;, we clearly have that \7 -V = 0.

Because of the symmetry it suffices to compute

L 1 1 . 9
/ t cosh ((tu)z) dt = / t cosh (t2u2) dt = 1/ cosh (T u2) dr — 1 sinh (u )’
0 0 2 Jo 2 u?

sinh o
where in general in the following is interpreted as 1, when o = 0. Then continue either by
«

a direct calculation or by a continuous extension, i.e. by going to the limit.

It follows from the above that

Ulx) = /OltV(tx) gt — % <sinh(z2) sinh(z?) sinh(y12)> 7

? ) 2
)

22 22
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Calculus 2c-10 Vector potentials

hence
e, ey e,
: 2 : 2 : 2
W - Uxx— 11 sinh(2®) sinh(2z®) sinh(y?)
2 P 2 Y2
x y z
1 sinh(z?)  sinh(y?) sinh(y?)  sinh(z?) sinh(z2?)  sinh(2?)
- a2 \f x2 y t y? z Y 22 T '
C TEST. We have
e, ey e,
1 0 0 0
W = - —_— — i
VX 2 or y 0z

Wl(mayVZ) W2($7yvz) W3(x7yaz)

sinh(22) . sinh(22)
Q2 + 2 sinh(z?) — —
1| sinh(2?) . o, sinh(z?)
= 3 T—l—Qsmh(w)—T
sinh(y?) . o, sinh(y?)
T—f—?smh(y )—T

= (sinh(z?), sinh(z?), sinh(y?)) = V.
The result is correct.

I 2. First compute
divV =x-V =22y + 22y — 4dzy = 0,

thus the field is divergence free. Then
1 1 1 1
Ux) = / tV(tx)dt = </ t{t3x2y—|—tz2}dt,/ t{t3xy? +-tz}dt, —4a:yz/ t.t3dt)
0 0 0 0

1, +1 1 2+1 4
= |zz -2,z -2, —- XYz
VYT 3E gty g YR,
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and hence
e, ey e,
W o= Usxx=| datds dnthis —dae
T Y z
1 2 1 2 4 2 4 2 2 1 2
= |-ay*z+ 2"+ cwyz, ——xyz — —acyz — - 2%,
<5 YR E T RIS, TR TR g ryE T g

1 1 1 1 1 1
gxzyQ—i-gyz—5x2y2+§yz—5x2y2—§zz>

1 1 1 1
<xy2z+—z2,—x2yz——z2, —yz——xz)

3 3 3 3

= z x2—|—lz —? —lz 1 —lx
= Y 3% Y 3 agy 3 .

C TesT. Here

ew ey ez
0 0 0
W = — — —
v ox oy 0z

acyZZ—&—% P —wzyz—%ZQ %yz—%xz

Lty Pt s 22 2
— 24z -z, — 24 -z, 2xyz—2xY2
3 Yyrg sty TaiTy yz—ory

= (2%y + z,2y* + 2, —dayz) = V.
Our result has proved to be correct.
I 3. Since
divV=xy-V=z+2-22=0,
the field is divergence free.

Furthermore,

1 1 1 1
Ux) = /tV(tx)dt:(/ t-t2xzdt,/ t-t2yzdt,—/ t~t2z2dt>
0 0 0 0

1 1
= 7 1727242’—32 :_anyVZa
4

4
thus
e € e, e, e e, e, e, e,
W = Uxx=-|2z yz —22 :Z r oy —z:Z Ty —z
Ty z x Yy oz 0 0 2z
2 €r €y 1
= % :§(yz2,—x22,0).
r oy
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C Test. We get

(SF% €y (S
1 1
v X W = 2 % Bgy % - 5(2I272y27 *22*2’2) = (zz,yz, 732) =V.
yz? —xz2 0

We have thus tested our result.

I 4. Clearly, since each V; is independent of x;, we must have 17 -V = 0.

Because of the symmetry it suffices to compute

1 1 2
/t-41 dt:l/ R U 00 )
0 1+ (tu)? 2 Jo 14+7u? 2 u?

1
where the result by continuous extension is interpreted as 3 for uw = 0. Hence

1<ln(1+y2) In(1 + 22) ln(1+z2)>’

1
= tV(t =
UG = [ Vi = g (S ) 2
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and thus
ew ey eZ
2 2 2
W = Uxxfl In(1+%°) In(1+2°) In(l+2* ,
2 y? 2 )
x y z
_ 1 /(14 2?%) o In(1+ 2?) In(1 +2?) ~ (14 y?) In(1+y?) ~In(1+ 22)
2 z x? ’ x Y2 ’ Y 22
C TEST. Here
em ey ez
1 0 0 0
W = - — — —
v 2 Jx dy 0z
Wl(xayaz) WQ(xa:%Z) Wg(x,%z)
2 In(l+¢?) N In(1 + y?)
1+ 42 Y2 Y2
1 2 In(1+22)  In(1+ 2?) 1 1 1
= — — = - V .
2 1+ 22 22 + 22 1+9y2 14+227 1+ a2 (@,9.2)
2 In(1+ 2?) n In(1+ 2?%)

1+ 22 2 2

We have tested our result.

sinu

I 5. Interpret

U
and the field is clearly divergence free. Due to the symmetry it suffices to compute

1 . 1
t 1 1-—
/t.wdt:_/ sin(tu) du = 22" for £ 0,
0 u Jo

as 1, when v = 0. Then V; is independent of z; (same index i in both places),

tu u?

and

! 1
/ tdt = = for u =0,
0 2

1—cosu 1

where we interpret 5 as ok when v = 0. This is in agreement with the continuous extension.
U

Thus

)

U(x):/OltV(tx)dt:(

1—cosz 1—cosz 1 cosy>

22 0 42 2
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and hence
e, ey e,
1—cosz 1—cosz 1—cosy
W = Uxx= 5 5 5
z x Y
T Y z
1—cosx 1—cosy 1—cosy 1—cosz 1—cosz 1—cosx
= AR f— R X - f— s y . — .
2 Yy 32 z 22 T
C TEesT. It follows that
em ey eZ
0 0 0
XW = —_— — -
v oz dy 0z

W1($7y,2) Wg(l’,y,Z) Wg(.’L’,y,Z)

l—cosz sinz 1—cosz
2 + 2

z z z
1—cosx sinx 1—cosz sinz sinx sin
= 3 + — 3 = ( s s y) = V,
T x x z x Y
1—cosy+siny 1 —cosy
y? y y?
and we have checked our result.
I 6. Since
divV=x-V=expr+expr—2expx =0,
the field is divergence free.
Then
1
U(z,y,2) = / t (exp(tx),ty exp(tx), —2tz exp(tx))dt
0

1 1 1
(/ t exp(tx)dt, y/ t? exp(tx) dt —2,2/ t? exp(tx) dt)
0 0 0
1/ exp(r) d y/x%()d 22/w2e()d
= = T-exp(T)dr, 2 T2 exp(T)dr, —— T2 exp(T)dr ) .
2, p A p 3 p

A small computation gives

/ T exp(r)dr = (x —1)e” + 1
0
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2

r2exp(T)dr = (22 — 2z + 2)e” — 2,

r

hence by insertion,

z—1)e” +1 2% — 2x +2)e” — 2 22 — 2x +2)e* — 2
U(’JJ,y,Z)<( .T)Q ay'( 3 ) ’722'( 3 ) )
Then
W(x) = U(x)xx
e ey e,
_ (x—1)e*+1 (22 —2x+2)e®—2 (22 —22+42)e®—2
= . Y- 3 —2z- 3
x x x
x y z
2 _ 97 4 2)e” — 2 2 _ 97 4+ 2)e” — 2
x x
297 4 2)e” — 2 —1)e” +1
_ _22'(:r x—i; )e +Z.(m )26 +
x x
(z—1)e*+1 (22 — 22 + 2)e® — 2
C 22 -y 22
3 (22 — 22 + 2)e” — 2
Yz - 3
x
(22% — 5z +5)e® — 5
= -z Jj‘2
(r2 — 3z + 3)e® — 3
—y-

72

C “TEST”. Even if the original expression of V(z,y, z

) looks very simple, an insertion into the

solution formula will give very difficult expressions with e.g. 22 and 23 in the denominator. We
shall therefore not in this case test the result, i.e. compute

ex ey ez

0 0 0

W = — — -

v ox dy 0z
W1(1'7y72) W2(¢7yaz) Wg(x,y,Z)

27
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Example 2.2 Consider a vector field V. : A — R?, where A is an open star shaped subset of the
(X,Y)-plane. Furthermore, assume that the field V is divergence free.

1) Prove that the vector field e, x 'V is rotation free and that there exists a scalar fielld W : A — R,
such that W ez is a vector potential of V.

2) Prove that a level curve of W is a field line of V.

A Vector potential.
D Analyze the text step by step and prove the claims in succession.
I 1) According to the assumption, V : A — R? is a function of the variable (x,y), which satisfies

ovi n Vs

divvV=—4+—==0.
iv g By 0

Define a vector field V by

Vi(z,y,2) = (Vi(z,9),Va(2,9),0),  (2,9,2) € AxR=A.

Then A is star shaped and V is also divergence free.
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We shall in the following only write V instead of the more precise V.

By one of the formulae of differentiation of a product,

Vx(e.xV) = (V-y)e.,-V(v-e,)—(e, - vV)V+e. (V- V)
= O—FO—QV—FdiVV'ez:O,
0z

and the vector field e, x V is rotation free.
Thus there exists a scalar field W : A x R — R, such that

- (817[/ oW oW

VW: %,a—y, 8Z>ZEZXV:(—‘/Q,V1,O).

Since V is independent of z, also W = W must be independent of z, thus we can choose a
scalar field W : A — R2, such that

W = (~Va,V3,0) =e, x V.

Further,
e, €, e
vV X (Fe,) = (YUW)xe,+Wyxe,=(e,xV)xe,=|-Vo, V3 0
0 0 1
e, €
= :(Vl,VQ,O)ZV.
Vo

(ALTERNATIVELY we may twice apply the geometric interpretation of the cross product). This
shows that W e, is a vector potential for V, and we have proved all the claims.

A level curve of W is given by
W(z,y) =c,

where the tangent field U(z,y) of the level curve satisfies
TW-U=(e,xV)-U=0.

Clearly, this equation has the solution U = V|, thus the level curve is also a field line of V.
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Example 2.3 Let o be a constant, and let two vector fields on R? be given in the following way:

U = (vf) x(v9), W=a(fvg—-fvi)

Show that one can choose a such that W is a vector potential for U.
[Cf. Example 1.12]

A Vector potential.
D Compute 57 x W and compare with U = 7 f X vg.

I By the rules of calculations,

VXxW = avyx(fvg) —avx(@vf)

a v fxvgtaf(Vxvg)—avgxvf-ag(v xvf)

avxvg+0+tavfxyvg+0

2a v/ f x g =2aU.
. 1 . .
We see that if a = 3 then W is a vector potential for U.

Example 2.4 Let V : R? — R3? be a given vector field. Find in each of the following cases the
following vector fields:

S(x) = /o TV(xT)dr, U(x)=-xx8(x), W(x)=1v xU(x).

1) V(z,y,2) = (2,9, 2)

2) V(z,y,2) = (22,42, 2?)
3) V(z,y,z) = (422,0,0)
4) V(z,y,z) = (0,cosy,0)

A The standard formula of computation of a vector potential applied on non-divergence free vector
fields. The example shall illustrate what can go wrong when the assumptions are not fulfilled.

D First note that the given fields are not divergence free. Then just compute.

I 1) First note that div V = 3 # 0, thus the vector potential does not exist.

We shall nevertheless compute the candidate of the “vector potential” according to the standard
procedure. First,

1 1 1
S(x) = / TV(xT)dr = / T (2T, yT, 27)dT = (&y,z)/ 2dr = % (z,y, 2).
0 0 0
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Then

U(x):—xXS(X):S(X)xx:éxxx:O,

and thus
Wi(x) = 7 % V(x) = 0 £ V(x).
2) Here
divV=2z+y+2z) #0,

so the field is not divergence free.
By a direct computation,

1 1
S(x) = / TV(xT) dT:/ T (2?72, y?7?, 22 r7) dr
0 0
! 1
= (m2,y2,z2)/ dr = 1 (mQ,yQ,ZQ) =-V
0
Then
e, €, e,
1
Uix) = —xxSx)=8Sx)xx=-| 2% y?> 22
Ty oz
Lo 2, .2 2 2
= 1 (y°z — 2%y, 20 — 2°z, 2%y — yx) |,
hence,
e, ey e,
0 0 0
W = U = — [— _ P
(x) v xU(x) 5 By e

yz—2%y ZPr—x?z 2?y—y’z

2% — 2yz — 22 + 22

1 1
= 7| V¥ -wr-2wy =§(:cz—:c(erZ),yz—y($+z),22—2(w+y))7

22— 2xz — 2yz + 22
which clearly is different from V(x).

3) Here div V = 8z # 0, and the field is not divergence free.
By a direct computation,

1 1
S(x) = / TV(xT)dr = / 7(42%7%,0,0) dr = (22,0,0).
0 0
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Then

r Yy oz
hence
e, ey e,
o 0 0 9 9
W) =vx U =| oo o | = (@ b 2ay—202) = 20 2,y —2),
0 —2%z 2%

which clearly is not equal to V(x).

.
s &
= F
| \" Y
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4) Tt follows immediately that div V = —siny # 0, so the field is not divergence free.
Then by direct computation,

1 1
S(x) = / TV(xT)dr = / 7 (0, cos(y 7),0) dr.
0 0
If y =0, then

1
1
S(:B,O,z):/ r(0,1,0)d7 = 2 (0,1,0)
0

If y # 0, then
1 .
1
/ 7 cos(yr)dr = it A — (cosy — 1),
0 ) Y
hence
1
5(07170)3 fOI‘y:O,
S(x) =

ysiny +cosy — 1
y2

(0,1,0), fory#O0.

Since the case y = 0 is obtained by taking the limit of the case y # 0, it suffices in the following
only to consider y # 0. It follows from

e, e, e,

—xx(0,1,0)=(0,1,0) xx=| 0 1 0 |=(z0,—2),

_ysiny +cosy — 1
= "

U(x) = —xxS(x) (2,0,—x)

siny 1—cosy
B (T B T) (2307 —ZL’)(ZQO(y :707 -z (p(y))V

where we have put

siny 1—cosy

o(y) =
Y y?
First calculate for y # 0,
cos sin sin 1 — cos cos sin 1 — cos
ly) = y_TOF MY o T ORY DY 5 BV, O
Yy Yy Yy Yy Yy Yy Yy
_ yPcosy —2ysiny +2—2cosy
= " ;
where
¢'(0) = lim ¢'(0) = 0.
y*)
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Then

zo(y) 0 —zp(y)

= (=2¢'(y),20(y), =2 ¢'());
which is different from V(z,y, 2).

Example 2.5 Let V : R? — R3 be a divergence free vector field. Show that the vector field
W(.’L‘,y,Z) = 7],;: Vm(xay7<)dc )
0
where B and 7y are constants, is a vector potential for V.
A Vector potential.
D Just test the given solution, i.e. show that 7 x W = V.
I Put W= (Wl,WQ,Wg). Then

e, €, e,

oxwo| 2 2 2 _<8W3_8W2 WL OWs awz_awl)

Or Oy Oz Oy 0z ' Oz oxr ' Ox Oy
Wy Wy Wjs
Now,
Yy z
Wi == [ Va@nnans [V
Yy

WQ(xay,Z) = _/ Vib(x7y7<) d(a
vy

and Ws(z,y,z) = 0, hence the first coordinate is

oWy OWy a [F _
6—y_ 92 —0+az A Vz(xayvg)dc_vz(x’y“z)’
and the second coordinate is
oWy oW 9 (v 9 [
o~ = 8z/ﬁ V.(x,n,7)dn + 6ZA Vy(z,y,¢)d¢ -0

= O+Vy(z,y,z):Vy(x,y,z)
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Finally, we get for the third coordinate,

oW,y oWy . oV, z 8‘/1/

W - a—y - . O (xayaC) dC+ Vz(%?/ﬁ) /y ay (%Z%C) dC
20V, aV,
Y

From the assumption

. v, oV, V.
vV = T o

:0’

follows by a rearrangement that the integrand is given by

oV, v, _ov.
Ox oy Oz

Thus by insertion,

Wy oW, oV, B .
6$ - 6@/ - Vz(xayvz) +/y az (Cf7y,<-) dC - Vz(‘rvyv’y) + [V;(xvyyéh)]g‘:»y - ‘/Z(x,yvz)
Summarizing,
vVxXW=V,

and we have proved that W is a vector potential for V.

REMARK. The formula of this example of a vector potential in R? is far easier to apply than the
usual procedure of solution given in most textbooks. ¢

Example 2.6 Given the vector field
V(z,y,z) = (2x + 2%y, y —axy?, Tz + 5z3) , (z,y,2) € R3.
1. Compute the divergence <7 -V and the rotation 7 X V.
2. Check if there exists a vector field W : R? — R3, such that V =7 x W.
Let L= {(x,y,2) € R® |2 >0,y >0, 22 + y* + 2% < 9}.
3. Find the flux of V through OL.
Let C denote the closed curve which is the intersection curve of OL and the plane z = 0.
4. Find the absolute value of the circulation fc V -tds.
A Divergence, rotation, vector potential, flux, circulation.

D Follow the guidelines. Apply Gaufl’s theorem and Stokes’s theorem.
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I 1) We first get by straightforward calculations,

vV =divV=(2+2zy) + (1 - 2xy) + (7 + 1522) = 10 + 152>

and
e, ey e,
B B 0 0 0 B 9 9
VXV—rotV— Oz 8y B - (0,0,ZI) +y)

2z + 2%y y—axy? Tz+52°

2) Since div 'V # 0, there does not exist a vector field W, such that V = 7 x W, because
V(v xV)=0.
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3) Tt follows from Gauss’s theorem and 1) that

flux(0L) = / V-ndS = /leVdQ /10+15z
oL

= 10vol(L) + 15 /
L

157

3
= 907 + — - 2/(9z2—z4)d
4 0

15 1
— 90r +—7T<34—— 3>_90 +3E

2 5
= 907 + 2437 = 333m.

2 3
0 =107 33,1 5
: 3 i /,3

3
1
[32’3 - = zﬂ
5 0

31(5-3)

z=90mr 4+ —

3
22 %} (9 — 2%)dz

Figure 1: The curve C and the quarter disc B inside.

4) The curve C encircles the quarter disc B in the first quadrant of centrum (0,0) and radius 3.

Then by Stokes’s theorem and 1),

%V-tds
c

/ rot V- nda:dy‘ ‘
B

(0,0, 2% +y2) - (0,0,1)dxdy‘

5 41° 8l
x2+y dxdy—/ {/ 0 'ng}dgp:z.[g_] = —.
/B( 0 2 [4], 8

37
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Example 2.7 A surface of revolution O with the Z-axis as rotation axis is given in semi polar coor-

dinates (0, p,z) by

3
0 << 27, 0<op<a og z:a—g—z,
a

where a € Ry is a given constant. The surface O is oriented, such that its unit normal vector n

always has a negative z-coordinate.
1. Sketch the meridian curve M of the surface.

2. Compute the surface integral

/(9(“;2)3 ds.

Furthermore, let there be given the vector fields

y? 22 s
V(xayaz):<a2+22_171_m71>7 (xay?z)ERv
and
3 3
x° +y
U(z,y,2) = (3zy,2:c+3z, a2——1—22)’ (z,y,2) € R3.

3. Prove the existence of a constant 3 € R, such that
V =p3vxU,
and find 3.
4. Find the flux

/ V -ndS.
o

5. Find a vector potential for V.

A Meridian curve; surface integral; flux; vector potential.
D There are many variants of calculations in this example.

I 1) The equation of the meridian curve is

z=a—%2=a{1—(§)3}, o€ 0,a].

2) We can compute the surface integral in several ways.

38
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021

Figure 2: The meridian curve M for a = 1.

Figure 3: The surface O for a = 1.

a) When we use the reduction theorem of surface integrals we get

@ [ (252) as= [ {220 N apa

where we have used that
_ 3 3
R (ROYSOR
a a a

If we apply the parametric description

1
Pt)y=t, Z({t)=a-—t*, tel0,a],
a
we get
! !/ . / 3 2 3 2 .
N(t, ) = P(t) - (=Z'(t) cosp, =Z'(t) sing, P'(t)) =t | 5 t"cosp, 5 t"sinp, 1,
a a

hence,

9
IN(t, @)l =ty/1+ E#’ te[0,a], ¢ €][0,2n].

Download free books at BookBooN.com

39



Please click the advert

Calculus 2c-10 Vector potentials

Then by insertion into (

o 2w 42 4
/{" Z} s = / / L 1+9<t> dy b dt
(@)
a? [° t4%4t3 ra? [° t4% A\

3 a
ma? 2 A\ ma?
_ma 20y t =_{1\/1—1}.
18 3 9 <a) o7 1OV
=0
b) ALTERNATIVELY insert directly into a standard formula:

/(9<G;Z>%ds — /M27r<a_TZ(9)>§QdS:27r/M (§>2 ods

2\? o' _ 2ma® /1 1
(a) do= g5 | {1+9td1+9)

; [(1+9t)%]: = 7;—&72 {1ovio-1}.

I
[\
=)

Q
O\g
|
~—
—

+
Ne)
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3) Clearly, V is divergence free.
Then by a straightforward calculation,

e €9 €3
0 0 0 392 32
VXU: O ay 02 :<m—373—m72+1>:3‘77
32—y 2x+ 3z %
hence
1
V =-v xU,

3

1 1
so 3= 3’ and 3 U is a vector potential for V, cf. 5).

Figure 4: The body 2 for a = 1.

4) a) LetB(0,a) denote the disc in the (X,Y)-plane of centrum (0,0) and radius A. The union
of the surfaces O and B(0,a) surrounds a simple body 2. Since V is divergence fret,
the ingoing flux through O must be equal to the outgoing flux through B(0,a), where
n = (0,0, —1), hence the flux is

2
2 .’II2

/V-ndS = / V. ndS = Yo11-Z 1) - 0,0,-1)ds
9 B(0,a) B(0),a) \ @ a

= —/ dS = — areal B(0,a) = —ma®.
B(0,a)

b) ALTERNATIVELY it follows from 3) and Stokes’s theorem that
1 1 )
VondS=- [ (yxU) -ndS=- U-tds= V .ndS=---=—mwa”,
o 3Jo 3 Jao B(0,a)

where the dots indicate that we proceed as above.

1
¢) ALTERNATIVELY we compute the line integral 3 $50 U - tds. Here 0O is the circle o = a

in the plane z = 0 run through in a negative sense, because n has a negative z-component
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on O. Thus a parametric description of 90O is
(z,y,2) = a(cos p, —sin ¢, 0), v € [0,27]
where

t = —(sin g, cos p, 0), ds = ady,

thus
1 1 3 3
/V-ndS -1 U~tds=—7{ (3z—y,2x+3z,%)-tds
o 3 Joo 3 Joo a*+z
2m
= —g/ (sin p,2cos gp,cosgga—sin?’ <p) - (sin g, cos , 0)a dp
0
2 2 2
3
- L {sin2<p+2(3082g0}d<p:—a— =.2m | = —ma®.
3 Jo 3 \2

d) ALTERNATIVELY there are also variants in which Green’s theorem in the plane occurs. We
shall only demonstrate one of them;

/V-ndS = lj{ t~Uds:—1/ <%_8Ux> S
© 3 Joo 3B \ 9z 0Oy

1
= ——/ (2+1)dS = — areal B(0,a) = —ma®.
3 JB(0,0)
5) Now, Wy is a vector potential for V, if V = 57 x W(. This is according to 3) fulfilled for
1 1 3+ g8

ALTERNATIVELY (and far more difficult) we can find a vector potential W, directly by means
of the standard formula,

1
Wy (x) = —x X /0 TV(rx)dr.

Here

1 1 2,2 1 2,2 1
/ TV(rx)dr = (/ T{%—l}dﬁ/ T{l—%}dﬂ/ TdT).
0 0 a“+T4z 0 a+T4z 0

We get by a calculation for z # 0,

1 7.2y2 y2 1 72,2 yz 1 1
T'de - 2 T'de:—z Tl | dT
0 a“+T1°z 2= Jo a“+T1°z 2= Jo z
.
a

2 2 2 2 1 2 2,2 2
1
— y_ T___a_ln 1_|_Z_7—2 :y__ay ln ]__|_Z_ .
z2 |2 2 22 a? o 222 224 a?

By taking the limit, or by a direct computation, we get

1 2,2 2
Y Y
e dT = — f =0.
/;T a2—|—7’222 T 4a2 or z
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Similarly

1 2,.2 2 2,.2 2
T T a~x z
\/(;deT:@—gln(l—‘rﬁ) fOI'Z?éO,
and

1 722 22
0 a* 4+ T2 4a

Due to the continuity it suffices in the following with the expressions for z # 0. Then
2 2,2 2
Y a’y Z
—1+?— ) ln{l-i-?}

1
_1 2 2.2 2
/0 TVx)dr=g o o 1n{1+z—},
z z

4 a2

1

We now find Wy by

Wy(x) = /OTV(Tx)dTXx

(31 €9 €3

1 y2 a2y2 22 1.2 a2x2 2,2

22

x y z
22 221 2
z—y——+—7In(l+—5
1 Y2 22 52
= 3 r+z——+—71Ih 1—|—§ , z#0
3 3 2 2
+x a z
—r—y+ Y ——4(333+y3)1n<1—|——2>
z a

For z = 0 the result is obtained by taking the limit.

1
This horrible expression is of course not equal to — U. On the other hand, a vector potential

is not unique. Here we can only check our computations by insertion.

C TEsT. Put

WO = (Wl,WQ,Wg,) and V = (Vl,VQ,Vg,).
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Then
oWs  OW, 1 3y?  3a?y? y?
8 = —{-1+22 — m(1+=)-1-2%
oy 0z 2{ e Mt e 2
2,2 2 2,2 2 1
+3 4y 1 (1+ Z_2> -2 é,/ - 2 2
z a z z¢ a
1+ —
a
1, W a2
2 22 22 a2 4 22
1 y2 2 2 2
= — —2 A :V
2{ +z2(a2+z2)(a + 2% —a) 1
oW,  O0Ws

The computation of

z ox
y are interchanged and we also change sign). Finally,
oWy, oW; 1
— =—{l+1}=1=1V-
Ox oy 2 {1+1 &

hence the found vector field W (x) is a vector potential for V.

= V4 is similar, where we could apply the “asymmetry” (z and
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Example 2.8 1) Find the divergence of the vector field

V(z,y,z) = (siny + cos z,sin z + cos z, sin x + cos y),

(x,y,2) € R3.

2) Prove the existence of a constant «, such that rot V.= V. Then find a vector potential for V.

A Divergence, rotation and vector potential.
D Just compute. In 2) one might get a better solution.

I 1) Clearly,

div'V=0.

Then compute

e, ey
VXv=rotV = % 8%/

siny +cosz sinz4cosx sinx + cosy

= (—siny —cosz,—sinz —cosx, —sinx — cosy) = —V(x,y, 2).

potential for V.

2) Tt follows immediately that 57 x (=V) = V| thus —V is according to the definition a vector

ALTERNATIVELY, V is divergence free, thus there exists a vector potential. One of these is

given by
W = —x x 8(x) = S(x) x x,
where
[ {sin(ry) + cos(r2)} dr

1
S(x) = / TV(rx)dr = fol 7{sin(7z) + cos(rz)} dr
0
fol 7{sin(7z) + cos(ty)} dr
By some small calculations we get

1
1 — {sinv —vcosv} for v #0,
/ Tsintodr =4 Y

0 0 for v =0,

and

1
/ T cosTvdT =
0

1
— {cosv —1+wsinv} forv#0,
v

1
3 for v = 0.

45
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By insertion of these expressions into S(x) we get the rather complicated vector potential

W(x) = S(x)xx

1. . z 1 .

;{smz—zcosz}%—ﬁ{cosx— +xsina}

1 . T 1 .

= E{smx—xcosx}—i—?{cosy— + ysiny}

L. y 1 :

g{smy—ycosy}—i—z—z{cosz— + zsinz}
Y (o 1 :
—2{smx—xcos:c}+;{cosy—l—l—ysmy}
x
z . 1 .

- —2{s1ny—ycosy}+;{cosz—1+zsmz} )
Y

T 1
T 1 1 .
e {sinz — zcosz} + x{cosx + zsina}

with suitable interpretations when z, y or z = 0.
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Example 2.9 Consider the vector field
V(z,y,z) = (2 + 3y, 2y + 3z, —4z), (z,y,2) € R3,
and the function
G(z,y,2) = ax® + By? + v22 + dxy, (z,y,2) € R3,
where o, B, v,  are constants.
1. Show that one can choose the constants o, 3, v, § such that V = G.

2. Compute the tangential line integral

/V~tds,
K

where K is the broken line composed of the two line segments from (2a,0, a) via (2a,0,0) to (a,0,0).
3. Show that the vector field
W(z,y,z2) = (Qyz +xz— a2, =20z —yz +y2yt — 2 + 22) , (z,y,2) € R3,
s a vector potential for V.
Let a be a positive constant, and let F be the oriented surface given by
2?4 9% + 2% = d?, z >0,
with the unit normal vector n pointing away from (0,0, 0).

4. Find the flux

/V-ndS.
f

A Vector analysis, i.e. check the gradient field, tangential line integral, vector potential and flux.

D The examples can be solved in many ways, and I have probably not found all variants. Below we
give the following variants:

1) We solve 1) in 5 variants.
2) We solve 2) in 2 variants.
3) We solve 3) in 2 variants.
)

4) We solve 4) in 4 variants and 1 subvariants (and there are more; we miss e.g. the calculations
when F is a surface of revolution).

I 1) First variant. A simple test.
When we compute \yG we get

vG = (2ax + oy, 0x + 20y, 2vz).

Choose a=1,0=1,v7v=—2and § = 3. Then
vG = (22 + 3y,3y + 2y, —4z) =V,

and V = (G is a gradient field with the integral
G(z,y,2) = 2% +y* — 22% + 3.

Download free books at BookBooN.com

47



Calculus 2c-10 Vector potentials

Second variant. Manipulation.
We conclude from

V.dx = (2z4 3y)dx+ (2y + 3x)dy — 4zdz
= d(2%) +d(y?) —d(22%) + 3{ydz + z dy}
= d (x2 +y? —222+ Sxy)
that

G(z,y) = 2> +y* — 222 + 3y

is an integral of \yG =V, and V is a gradient field.

Then by comparison, a =1, 6 =1,v= -2, § = —3.
Third variant. Indefinite integration.

Put

w=V.dx =22+ 3y)dr + (2y + 3z)dy — 4z dz.

Then
Fi(z,y,2);= /(233 + 3y)dz = x° + 3y,

thus
w—dF; = (22+3y)dx + (2y+3x)dy — 4z dz — {(22+3y)dz + 3z dy} = 2y dy — 4z dz,
which is reduced to
w—d(m2—|—3xy) :d(y2 —2z2).
Then by a rearrangement,
w=d (x2+3xy) +d (y27222) =d (x2+y27222+3zy) ,
and we conclude that
G(z,y,2) = 2% +y? — 222 + 3y

is an integral of V,ie. V=G, and a=1,0=1,v= -2, § = 3.
The latter two variants assume that we have proved that V is a gradient field. First note that

€1 €9 e3

0 0 0
t V= — — — | =(0-0,0-0,3—3)=0
ro x Oy 0z ( ’ ’ ) ’

204+ 3y 3x+2y —4z

and V is rotation free. The domain R? is simply connected (it is even convex), hence V is a
gradient field.

Download free books at BookBooN.com

48



Calculus 2c¢-10 Vector potentials

Fourth variant. Integration along a broken line.
We get by a tangential line integration along the broken line

(0,0,0) — (x,0,0) — (2,y,0) — (z,y,2)  in R®

that

x T y Z
/ V~dx:/ 2tdt+/ (2t+3x)dt—/ 4tdt = 2* + y* + 3wy — 222
0 0 0 0
Since we already have proved that V is a gradient field, an integral is given by
G(z,y,2) = 2 +y* — 22% + 3ay, vG =V,

and we get by comparison that « =1, =1, vy= -2, = 3.
Fifth variant. Radial integration.
We have above proved that V is a gradient field. Therefore,

1
G(xayaz) = (%,y,Z) . / V(xT7 yr, ZT) dr
0
1
= (x,y,2) - / ((2z + 3y)T, 2y + 3x)7, —427) dT
0
1
= (z,y,2) - (2¢ + 3y, 2y + 3z, —4z2) / Tdr
0

1
= 3 {(22® + 3zy) + (2y° + 3ay) — 427}

= 22 +y? —22% + 3ay
is an integral of V, i.e. G = V, and we get by comparison that « =1, =1, v = -2,
0=3.

2) First variant. The gradient theorem.
According to 1), the field V is a gradient field with the integral

G(z,y,2) = 2 +y* — 22 + 3zy.

Then by the gradient theorem,
/ V -tds = G(a,0,0) — G(2a,0,a) = a* — (4a* — 2a*) = —a*.
K

Second variant. Line integral.
We have on the line segment from (2a, 0, a) to (2a,0,0) that = 2a and y = 0, while z runs
through the interval [0,a] from a to 0 (the reverse direction).
On the line segment from (2a,0,0) to (a,0,0), the variable 2 runs through the interval
[a,2a] from 2a towards a, also in the reverse direction, while y = 0 and z = 0.
As a conclusion we get

0 a
_ o ) _[_ 270 27a
/}CV-tds = /a( 4t)dt+/2 (2t +3-0)dt = [—2t*] + [¢*],,

a

2a* + (a* — 4a?) = —a?.
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3) First variant. Test.
We shall only prove that V =57 x W. We get

(31 €9 €3

0 0 0

XW = — — -

v Ox oy 0z
Wz +axz—a? —2uz—yzr+y? y?—ax?+ 22

2y — (-22 —y), 2y + o) — (—22), -2z — 22)

= (By+2x,3x+2y,—4z) =V,
and W is a vector potential for V.
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Second variant. Insertion into a standard formula.
The assumptions are that R? is star shaped (obvious) and that V is divergence free. By a
small computation,

divV=2+2-4=0,

and it follows that V has a vector potential, which can be found by the formula
1 1
Wy(x) = —x X / TV (rx)dr = {/ TV(7%) dT} X X.
0 0
Since V is homogeneous of first degree,

V(rx) =7V(x),

it follows by insertion that

(S5 €9 €3
! 1
Wi(x) = {/ T'TdT} V(x) xx = 3 20 +3y 2y+3zx —4z
0
x Yy z
1
= 3 (z{2y+3z}+42y, —42x—z{2x+3y},2xy+3y2—2scy—3a:2)
1 2 2
= 2 (B0 + 6y}, —={6w + 3y}, 397 — 307)
= (2yz+zz,—222 —yz,y° — 2?)
= W(X) + (_12’ y2a 22) )
hence

VXW:VXW0+VX(—xz,yQ,ZQ):V—&—O:O.

We conclude that both W and W are vector potentials for V.

4) First variant. Stokes’s theorem.
When the unit normal vector is pointing away from (0, 0,0), we get the natural orientation
of the bounding curve (a circle in the XY-plane),

O0F : r(t) = alcost,sint,0), t €0, 2m],

in its positive sense.
It follows from 3) that V = 57 x W, hence the flux is according to Stokes’s theorem

/V.ndsz/(va).ndsz/ W - tds
F F 5F

27
:/ (0—a®cos?t,0—a’sin?, a?sin® t—a® cos® t) - a(—sint, cost, 0) dt
0

3 3

o 3 . 3 27
t t
=q° / {COSQt sint — sin?t cos t} dt = a3 I:_ CcOos sin :| o
’ 0
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Figure 5: The half sphere F and the “bounding curve” §F for a = 1.

Subvariant. From the second variant of 3) we also obtain that V = 7 x Wq. Now, Wy =
(0,0,---)and t = (---,--

,0) on 0F, so an application of Stokes’s theorem shows that the
flux is

/V-ndS:/(vao)~ndS:/ WO'tds:/ 0ds = 0.
F F 5F 5F

Second variant. Surface integral, rectangular coordinates.
The unit normal vector is

/(2x2+3xy+2y274z2) ds
aJF
2 2, 2 o2, _2 2., .2 5.2
T4y —2z"+-zy | dS = (2 +y° —22%)dS,
a Jr 2 a Jr

because |. F2ydS =0 of symmetric reasons.

1
n:_(x7y7z)7 OH]:,
a
hence the flux is
1 1
V. ndS = / — (22+43y, 3z+2y,—4z) - (z,y,2)dS =
F Fa

It also follows by the symmetry that

/xzdsz/yzds.
F F

Let F1 be given by
22 +y? 4+ 2% =d?, y > 0.

Then we get in exactly the same way,

/a:ZdS: z2dS = Z2dS=/2’2dS,
F F F F

thus

/xQdS:/y2dS:/z2dS.
F F F
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Hence by insertion,
2
/V-ndS:—{/x2d5+/y2dS—2/szS}=O.
F a \JrF F F

Third variant. Surface integral, spherical coordinates.
In spherical coordinates a parametric description of the surface is given by

x = a sinf cos @,

y = a sin @ sin g, oe[o,g}, o € [0,27].

z=a cosb,
Thus the normal vector becomes
e €2 €3
N, o) = a cosf cosy acosfsing —asinf
0

—a sinf siny a sinf cosp

= a?(sin?# cos g, sin® § sin g, sin f cos 6)

= a*sinf (sinf cos p,sinf sin @, cosh),
and we note that the z-component is positive, showing that we have obtained the right

orientation. Then
(2a sin 0 cos p+3a sin  sin , 3a sin 0 cos p+2a sin 0 sin p, —4a cos ) -

-(sin @ cos @, sin O sin @, cos §) a® sin 6

= a {2 sin? 6 cos? ¢ + 3sin? 0 sin ¢ cos ¢ + 3sin’ O sin ¢ cos @

+2sin? @ sin? p — 4 cos? 9} sin 0

a? {2 sin? @ + 6sin?  sin ¢ cos ¢ — 4 cos? 0} sin 6

a’ {2 — 200529—4cos29+6sin2951n<pcosgp}sin@

= 2a%{1—3cos® @ + 3sin® fsinpcosp} sinb.

do

The flux is
V.nds = / V(x(0, ) - N6, ) df dip
F E

27 5
:2a3/ {/ (1—300829+3sin298in<pcos<p)sin9d9
0 0

:47ra3/5 {1—3cos®0} sin6df = 4ma® [—00894"30539]0% =0
0
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Fourth variant. Gauf§’s theorem.
First note that F does not surround any body €2, so we cannot apply Gaufl’s theorem
immediately. However, if we add the plane surface (“the bottom”)

B = {(z,9,0) | 2* +y* < a’}

with the unit normal vector n = (0,0, —1), then the union F U B surrounds the half ball Q.
We found above that div V = 0, so we conclude by Gauf}’s theorem that

/V-ndS+/V-(0,0,fl)dS:/dideQ:/OdQ:O,
F B Q Q

hence by a rearrangement,

/V-ndS:+/V-(0,0,1)dS:/OdSzO,
F B B

where we have used that V = (2z + 3y, 3z + 2y,0) on B.

Fifth variant. The surface as a surface of revolution.
According to the second variant we shall compute the surface integral

2
/V-ndS:—/(x2+y2—2z2)dS.
F F

a

It can of course be done do by considering F as a surface of revolution. We shall leave this
variant to the reader.
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Example 2.10 Given the two functions
L(z,y) = e’ +y(e” —e™),  (z,y) €R?,
M(z,y) = e* + x(e¥ — ™), (z,y) € R

1) Prove that the vector field V(z,y) = (L(z,y), M(z,y)), (x,y) € R2, is a gradient field, and find
all integrals of V.

2) Show that the vector field

U(z,y,2) = (zM(z,y), 2 L(z,y), L(z,y) + M(z,y)),  (z,y,2) € R?,

isnot a gradient field, while there exists a vector potential for U. (One shall not find such a vector
potential).

A Gradient field, vector potential.

D We shall prove in three ways that V is a gradient field. That U has a vector potential is shown
by means of the necessary and sufficient conditions.
I 1) First note that L(x,y) and M(z,y) are of class C* in all of R

First method. Manipulation.
By means of the rules of calculations we get by some manipulation,

Ldr+ Mdy = {e+y(e*—e")}dx + {e*+z(eY —e™)} dy
= {eYdetzeVdy} + {ye“dx+e®dy} — e {ydx+x dy}
{e’dut+ad(e’)} +{yd(e”)+e"dy} — e™d(xy)
= d(ze’)+d(ye”) —d (™) = d(ze? + ye® — ™)
= vF - (dz,dy).
Hence (L(x,y), M(x,y)) is a gradient field and its integrals are given by

F(z,y) = ze¥ + ye* — ™ + C, C arbitrary constant.

Second method. Indefinite integration.
We first get

Fi(z,y) = /L(z,y) dx = /{ey +y(e® — ™)} do = xe¥ + ye¥ — ™.

Then by a check

F’
% =zeV+e" —xe™ = e Fu(e—e") = M(z,vy),
Y
which shows that (L(x,y), M(z,y)) is a gradient field and that its integrals are
F(z,y) = Fi(z,y) + C =ze! +ye* =™ + 0, (z,y) € R,

where C' is an arbitrary constant.
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Third method. Integration along a broken line followed by a check.
When we integrate L dxz + M dy along the broken line

(0,0) — (2,0) — (,9),

we get the candidate

F(z,y) = /OIL(t,O)dt—F/OyM(:U,t)dt:/Ozdt+/0y{e$+m(et—emt)} dt

Y

o =T tye’ +we! —e" —uw+1

= x4+ [tez +zet — emt]
ye' +xe¥ — e + 1.

By testing (this is mandatory by this method) we get

oF

OF gt e — e = eV 1 y(e* — &) = Lz, ),

ox

OF

i e’ +xe¥ —xe®™ =€ + x(e! — ™) = M(z,y).
Y

It follows from the above that (L(x,y), M(x,y)) is a gradient field and that its integrals are
F(z,y) = xe¥ +ye® —e™ + C, C a arbitrary constant.
2) Now
a x xT
(e M(z,9)) = M(z,y) = ¢ + 2(e” — ™)
and
a T 2 x T T x a
5 (L(@,y) + M(z,y)} = ye® —y7e™ + e — e —aye™ # o~ {2 M(z,y)},
so the necessary conditions of a gradient field are not satisfied, and U is not a gradient field.

Clearly, U is of class C* in all of R?, and R? is star shaped. (It is even convex.)
As (L, M) is a gradient field, we have in particular

oL _ oM
oy oz’
thus

ox Jdy

oM oL 0— {8M 8L}
and U is divergence free and defined in a star shaped domain. Therefore U has a vector
potential.

REMARK. In principal the integrals of the formula of the vector potential can be computed.
However, the result is very difficult to manage with a lot of exceptional cases. For this reason
it is highly recommended always to find some other method before one tries to find the vector
potential by means of the standard formulze. ¢
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Example 2.11 Given the vector field
V(x,y,z) = (cosy—sin z, cos z—sin x, cos z—sin y), (z,y,2) € R3.
1) Find the divergence <7 -V and the rotation <7 X V.
2) Show the existence of a constant o, such that o'V is a vector potential for V.

3) Let the curve K be the boundary of the square of vertices (0,0,0), (0,7,0), (0,7, 7) and (0,0,7),
in the given succession. Find the circulation

fV”cds.
K
4) Let

Q={(z,y,2) ER? |1 <a?+y?+ 22 <4},
Find the flux of the vector field
U(z,y,2) = (z,9,2) + V(,y, 2), (z,y,2) € R3,
through 02, when the unit normal vector n of ) is pointing away from ).

A Divergence, rotation, vector potential, circulation, flux.
D Apply Stokes’s theorem and Gauf’s theorem.

I 1) Tt follows immediately that

divV =y -V =0.

Then
(31 €9 (S
0 0 0
rot V. = YV X V = 8_;5 a—y &

cosy—sinz cosz—sinx cosxr—siny

= (—cosy+sinz, —cosz + sinx, — cosx + siny)

= —(cosy —sinz,cosz —sinx,cosz —siny) = —V.
2) If we choose @ = —1 in 1), then
V X (_V) = V7

and it follows that —V is a vector potential for V.

3) Here we give two variants.
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Figure 6: The square K.

a) Stokes’s theorem. The square K lies in the Y Z-plane, and the unit normal vector is in the

chosen orientation given by

(1,0,0).

n

Then by 1) and Stokes’s theorem,

(—cosy +sinz)dS

J;
= [ [ cesnarpazs [Can [

n-rot VdS

K

v - |

2.

0+ m- [—cosz]
b) Straight forward computation of the line integral. The curve K is composed of the curves

t=(0,1,0),

t e [0,n],

r (t) = (0, tv 0)7

’Clt

(Oa 0; 1)7

t

t € 10,m],

ro (t) = (O’ 1),

ICQZ

t= (Oa _170)7

t € [0,n],

r3(t) = (0,7 —t,7),

IC3:

t=(0,0,—1).

t €10,m],

(0,0, — 1),

Iy

Ka:

—|—/ (—cosz+sinx)ds+/ (—cosz+siny)ds
3 4

= /(1—0)dt+/ (1—sinm)dt
0 0
—|—/ (—cos7r+sin0)dt—|—/ (—1+sin 0)dt
0 0

T+mT+7T—7=2m.

/V-tds = /(cosz—sinx)ds+/ (cosx—siny)ds
K 1 2

Then by insertion,
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¢) It follows from 1) and Gauf’s theorem that

flux = U~ndS:/dideQ:/{3+ div V}dQ
o) Q Q

4
= /(3+O)dQ:3vol(Q) :3.?” (2% —13) = 287,
Q
Example 2.12 1. Find the rotation of the vector field
U(z,y,2) = (-yz,0,2y),  (2,y,2) €R’,

and show that U is not a gradient field.
A space curve K is given by the parametric description

(r,y,2) =r(t) = ((3083 t,3cost,sin® t) , te [O, g] .

2. Compute the tangential line integral

/U~dx.
K

3. Find a function G(z,z2), (x,z) € R?, such that the vector field
W(:I:’y7 Z) = (07yG(:I:’ z>70)7 ('T7 y’z) e RB’
is a vector potential for U.

A Rotation; tangential line integral; vector potential.

D Use the standard methods in the former two questions and check the conditions of a vector potential
in the latter question.

Figure 7: The space curve K.
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I 1) Tt follows immediately that U is divergence free. Then

e, e, e,

0 0 0
rot U= a_x a_y & - (J?, _y_yaz) - (J}, —2y,2)
—yz 0 zy

It follows from rot U(x) # 0 for x # 0, that U is not a gradient field.
2) We get from

r(t) = (cos®t,3 cost,sin’ t)

that

r’(t) = (—3 cos? tsin t,—3 sint735in2 t cos t) ,
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and the tangential line integral is reduced to

™

l
/U-dx = 3-3/ (—costsin®t,0,cos?t) - (—cos® tsint, —sint,sin®t cost) dt
K 0
z .
= 9/ {cosdtsin4t+cos5tsin2t} dt
0

3 z
= 9 / cos® tsin?{sint + cos®t} dt = 9 / cos® tsin® t dt
0

0
0

3) If W(z,y,2) = (0,yG(x, 2),0), then

[NE)

1
(1 —sin®t)sin®t - cost dt = 9/ (u? —u*) du
0

€, ey e,

rot W=| 0 0 0

(_y G;(aﬁ,z), O,yG;(x, Z))

is equal to U for
G.(z,2)=2z and  Gl(z,2) =z,
hence by integration

1 1
Glw,2) = 52+ 1(w) = 52° + al2),

and by a rearrangement
1, 1

57— ©a(2) = 51‘2 — 1(x) = constant,

SO

1 1
G(x,2) = —a* + =

5 5 2 +C, C arbitrary constant.

REMARK. If we instead apply then we should first notice that U is divergence free in the star
shaped (convex) domain R? containing 0. This implies the existence of the vector potentials
and that one of these can be found by the formula

1
Wo(x) = /0 T(rx)dr, where T'(x) = U(x) x x.

First calculate

Tx)=Ux)xx=| —yz 0 zay |= (—xy2,x2y +y2?, —yzz) .
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All coordinates are precisely of degree 3, thus by an integration with respect to 7,

! ! 1 1 1
Wy(x) = / T(rx)dr = T(x)/ 2dr = <_Z zy?, 1 (2 4 22%)y, ~1 y2z> .
0 0

We see that Wy (x) is a vector potential for U(x). It is, however, not of the wanted type. ¢

Example 2.13 Two vector fields V, W : R3 — R? are given by
V(x,y,z) = (eYsinz,x e’ sin z,x €Y cos z) ,
W(z,y,z) = (x +2xeYcosz, —2eY cosz, —z + 23) .

1) Find the divergence and the rotation of both vector fields.

2) Show that V is a gradient field and find all its integrals.

3) Compute the tangential line integral

/V'tds,
K

where K is the broken line composed of the three line segments: from (0,0,0) to (1,0,0), from
(1,0,0) to (1,2,0), and from (1,2,0) to (1,2, g)
4) Show the existence of a constant o, such that «W is a vector potential for V; find a.

5) Let F be the sphere of centrum (0,0,0) and radius 3. Find the flux

/W-ndS7
F

where the unit normal vector n is pointing away from the centrum of F.

A Divergence and rotation; gradient field and integrals; tangential line integral; vector potential; flux.

D It is in some sense better to go through the example in an other succession than the above. If we
let 4) follow immediately after 1), then it becomes obvious. We give three variants of 2) and two
variants of 3), while 5) is given in 3 variants.
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I 1. We get by straightforward computations,

divV = 04zeYsinz—xzesinz =0,
e e e
v v ? xeY cos z — xeY cos z
0 0 o

rot V. = — — — = eYcosz —eYcosz
ox dy 0z

v Yo . e¥sinz —e¥Ysinz
e¥sinz xeYsinz zeYcosz

0,
divW = 142e%cosz—2eYcosz— 1+ 322 =322,
em ey ez
0 0 0
t W = — — —
ro ox dy 0z

x4 2xe¥cosz —2eYcosz —z+ 28

= (0—2¢Ysinz, —2zeYsinz — 0,0 — 2ze? cos z)

= —2(eYsinz,ze sinz, xe? cos z) = —2V.

1
4. Asrot W = 7 x W = -2V, we have ¥ X (—5 W) =V, and it follows immediately that

1 1
—3 W is a vector potential for V, and that a = —5

2. Asrot V = 0 and R? is star shaped (it is even convex), V is a gradient field. Its integrals may
be found in one of the following three ways:

First variant. Indefinite integration.

Fi(z,y,2) = /Vx(x,y,z) dr = /ey sinzdr = x e sin z,
where
VF = (eYsinz,ze¥sinz, e’ cosz) =V,
proving that Fj is an integral of V and all integrals are given by
F(x,y,z) =xeVsinz + C, C' arbitrary constant.

Second variant. Manipulation, using the rules of calculations. It follows immediately from
V.-dx = éeYsinzdr+ 2Ysinzdy+ ze¥ coszdz
= €Y sinzdx+z-sinz-d(e¥) + xe¥ d(sin 2)
= d(xeYsinz) =d(zeYsinz + C),

that the integrals are given by

F(z,y,z) =xzeYsinz+ C, C arbitrary constant.
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Third variant. Integration along a broken line
(0,0,0) — (2,0,0) — (z,9,0) — (z,v, 2).
This gives the candidates

T Yy z
F(z,y,z) = C+/ 0dt+/ 0dt—|—/ xeY costdt
0 0 0

= zxeYsinz+C.

Now, we have proved above that the integrals exist, so we conclude that these are the set
of all integrals when the arbitrary constant C' € R varies.
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Figure 8: The curve K.

3. We get by the gradient theorem that
/ V-tds:F(Lz,f) —F(0,0,0)=1-¢2-sin L —0=e2.
© 2 2
ALTERNATIVELY, write K = K1 + Ko + K3, where
Ki: (z,9,2) = (¢,0,0), te][0,1], t =(1,0,0),
Ko: (z,9,2) = (1,£,0), te€][0,2], t =(0,1,0),
Ko (@y.2)=(1.2,0), te|o.7], t=(0,01),

thus

1 2 =
/V-tds=/ Odt+/ Odt+/21-62costdt262.
K 0 0 0

4. This was answered previously.

Figure 9: The intersection of the ball  with the (X, Z)-plane.
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5. The sphere F encloses the ball €2, so it follows from Gaufl’s theorem and 1) that
/W-ndS: dideQ:/3z2dQ.
F Q Q

This space integral is then computed in three different ways:

First variant. the slicing method. At height z € [—3, 3] the ball is intersected into a disc B(z)
of radius ¢ = v9 — 22, thus

3 3
flux = / 32%dQ) = / 322 / ds 3 dz = / 32% areal B(z)dz
Q -3 B(2) -3

3 3 55 3
= / 3z2-7r(9—z2) dz:377/ (922—24) dz = 3m [322——}
_3 _3 5] 4

3-81 3 9727
= 2(81— —— ) = 8l (l—= | = —.
3 (8 5 ) 6m -8 < 5) 5

Second variant. The post method. We get in polar coordinates

2m 3 v/ 9—02
flux = /322dz:/ / / 322dz | odo p dyp
Q 0 0 —\/9—02

3 - 3 5
= 2 v e d:2/ 9- 0% 20d
W/O[Z]—\/WQQ WO( 0*)* - 20do
3
2 4 5 4m 9727
= 2 |—2(9-0H)?| =-7-92=—.3" ="~
”{ 5 Q)L 5" 5 5

Third variant. Spherical coordinates. When we use these we get

27 T 3
flux = / 322dz:/ {/ </ 3r2cos20~rzsin9dfr> dﬂ} dy
Q 0 0 0

P 3 513
= 277/ 3cos? Osinf db - / rPdr = 21 [_ cos® 9]3 . {r_}

0 0 5]
3 9727
- 97.9.2 2%

TEE T
Remark. A direct computation of the flux by the definition alone looks impossible, because
1
W-n = (r+2zxe¥cosz, —2e¥cosz, —z+ 2°) - 3 (2,y,2)

1
= 3 {x2 + 222%€Y cos z — 2yeY cos z — 2% + z4} ,

and what then? o
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Example 2.14 Given the vector field
(_yaxao)v $2+y2 < a27

V(x7yvz) = a2

2 2 2

W(—%%O)’ = +y° = a”

1) Let K be the circle of constant values of the coordinates o and z, and with a positive orientation
with respect to the unit vector e,. Prove that

: 210%, o< a,
f V- tds=
K

2ma?, 0> a.

2) Show that (0,0, W), where

1
g@—a?—y?), 2’ +y’<a?
W(x,y,z) = u

a?ln —— z? +y? > d?,

is a vector potential for V.
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A Circulation along a curve; vector potential.

D Compute the circulation straight forward. (Consider if it is possible to use Stokes’s theorem instead.
Show that 7 x (We,)=V.

I 1) Since V does not depend on z, we may assume that K lies in the XY-plane. Then by Stokes’e
theorem,

7{V~tds:/ez- rot VdS,
K B

where B denoted the disc of radius o. If ¢ > a, the right hand side does not look nice, so we
compute instead the circulation by the definition. Let

K: (o0cosgp,psing), v € [0,27].
Then
tds = p(—siny,cosp) dp.

Then for o < a,

2m
%Vd:ds = / o (—sinp, cosp) - v (—sin g, cos @) dp
K 0

27
/ 0’ (sin2 © + cos? go) dy
0
2
_ 2 _ 2
= g/ dp = 2mp for o < a,
0
and we have for o > a
2 a2
%V“cds = / — - 0(—sing,cosp) - o (—sin g, cos ¢) dp
K o ©
27
= a2/ do = 2ma?, for o > a,
0

thus the first claim has been proved.

2) If 2% 4+ y? < a?, then

e, e e,
0 0 0
VX(WBZ): % 6_y E :(7;’/73770):\/3
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05 1[5

Figure 10: The curve K in the XY-plane for a =1 and ¢ = 1.5.

and if 22 + y% > a?, then

e, € e,
a9 9 9
vx(We,) = Jor Oy 0z

0 0 a%ln v
\x2 +y?
2

_ o _Q 2 2 3 2 2 _
- 2<8t(aj YY), 5y @), 0) =

By the continuity from the inside and from the outside we get

a2

:E2+y2

v x(We,)=(-y,z,0)=V for x? —|—y2 = a’.

Hence we have proved that W e, is a vector potential for V.

(_y7 Z, 0) =V.
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3 Green’s identities

Example 3.1 Consider a bounded domain Q C R? with its boundary consisting of m + 1 disjoint
surfaces Fo, Fi1, ..., Fm, such that Fo surrounds all the others.
We shall find a function w, which in Q° fulfils Poisson’s equation

viw = p,
and which has constant values on the surfaces Fo, Fi, ..., Fm. Let ®; denote the fluz of syw through
Fi, t.e.
0
o= [ Z2as.
1. Let the function p be given, and assume that w is zero on Fo, and for each i € {1,...,m} either

D, or the value of w is given.
show that w is uniquely determined.

Then let Q0 be an unbounded domain with its boundary consisting of m disjoint and bounded surfaces
Fi, ..., Fm-. Then the uniqueness theorem proved above also holds when the condition on Fy is
replaced by the following:

There exist positive constants C, Cy, such that

x| Jw(x)] < C1  and ||x|]?|| v w(x)| < Ca for all x € Q.
2. Prove this by considering Q(R) = QN K(0; R) and then let R tend to plus infinity.
A Uniqueness theorem for a mixed Dirichlet/Neumann problem for Poisson’s equation.

D Assume that w and w are solutions. Put f = v — @ and apply Green’s first theorem by choosing
g = f and applying that f(x) =0 on every F;.

In 2) we estimate the integrand in f(’)Q(R) f g ds.
n

REMARK 1. The example is dealing with a uniqueness theorem within a smaller class of functions
than the mathematically most natural class. Therefore, on cannot expect that there actually exists
a solution within this class. The problem is that the Neumann problem in some cases is difficult
to treat. However, we can succeed if we have a boundary surface F; with a Dirichlet condition
instead, i.e. f(x) = a; on F;. The situation is worse if we are given the flux ®; on F;, because
then we cannot in general conclude that f(x) is equal to some (unknown) constant on F;. This is
in general not the case, so we shall usually only expect to be able to show the uniqueness and not
the existence of a solution within the given class of functions. ¢

I 1) First give the problem a mathematical description:

V2w = p, in QO Poisson equation
w(x) =0, in Fy i=0
Dirichlet conditions
(4) w(x):ai, in F; iE{i17...,ik}
ow ) . ) .
[ 7= dS =@, i¢ {it,. .. ik} Neumann conditions
i dn
i {i1,... i} additional condition.

w(x) = a; in F;
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It will be convenient to put

k
A=|JF,UF og B=00\A, dvs. 90 =AU B, disjunkt.

Jj=1

Assume that w and @ are solutions of (4). By putting f = w — w it follows by the linearity
and the additional condition that f satisfies

v f =0,
(5) f(x)=0 pa AUB = 09,
ffi%dszo i¢ {ir,. .., ix}.

Choose g = f in Green’s first formula. Then

of
2 7 fYdQ = 2140 = 2Las =
Lt revs-onia= [ nryan= [ rFlas-o

WWW.STUDYIN

Today’s job market values amb
universities foster these qualitie
close to the latest ideas and glob
SI, Whatever your career goals mz
Swedish Institute skilx and a competitive advantage

Download free books at BookBooN.com

71


http://bookboon.com/count/pdf/346359/71

Calculus 2c-10 Green’s identities

because f(x) =0 on 052, thus

/ |7 £l = o.
Q

Since || 7 f]|? is continuous and nonnegative, we must have 5/ f = 0, and we conclude that f is
a constant. Now, f is continuous and zero on the boundary, so f must be identical zero, thus
w = w, and we have proved the uniqueness in the bounded case.

REMARK 2. Note that the flux ®; through some of the surfaces F; does not enter the argument
at all, since we are only using the strong additional condition that w(x) = «; (the same though
unknown constant) for ¢ ¢ {iq,...,ix}. Hence the problem is formally over-determined, since
we do not apply all our information. (If this information is not in agreement with that we
only get the zero solution, we clearly have a problem. This illustrates what is mathematically
“wrong” with this example). ¢

2) Then consider the unbounded case with the additional growth conditions as a replacement of
the missing surface Fy.

When we take the intersection of {2 with the ball K (0; R), we get a bounded domain Q(R). It
is left to the reader to sketch the situation on a figure.

Then split the boundary of Q(R) in the following way

A(R)

k
Ko;rR)n|JF,,
j=1

B(R)=K@©O;R)n |J 7,

i1, ik}
C(R) = 0K (0; R) \ {A(R) U B(R)},
where we have Dirichlet conditions on F; for i € {i1,...,4x} and Neumann conditions on F; for

i ¢ {i1,...,i5}. Apart from the fact that we do not know the behaviour on C'(R), the problem
can with some modifications be written as in (4).

Let w and w be solutions. We put again f = w—w. Then f satisfies (5) with the modifications
that AU B = 99 is replaced by A(R) U B(R) [C 09Qg], and F; is replaced by F; N K (0; R).

Choose as before g = f in Green’s first formula. Then

[oviea= [ fSas= [ p2asi [ Wase [ p2as
Q(R) o0(r) " On AR On Br). Ob oy’ n

Since f is zero on A(R) and B(R), this is reduced to

0
[ ivispae= [ golas
Q(R) C(R) n

which is not necessarily zero.

We notice that according to the additional conditions we have for x € C'(R) that

. . 201 20)
£l = hw(x) =0} < bl + [060] < = = ==
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and
af N _ 2CY
< = — < < —
Z<hosl=Ivu-vil<lvul+lval< .
and we obtain the estimates
of of 20, 20,
f=—dS| < / f-—dSS/ — —=dS
/C(R) on C(R) | ‘ on C(R) R R?
4C1 C 4C, C —
— ];3 2 areal(C(R)) < ];3 2 arca(9K(0; R))
4‘/102 2 1671'0102
= B -4 R :T_)O for R — +o0,

from which we conclude that

2 . 2 .
d2 = lim dQ2= lim
AHVHI RLnLW)VfH Llim

9 4s =0,

C(R) on

Notice that as || 57 f||* > 0, we can take this limit to find the value of the improper integral

[ 119 firda=o.
Q

Since || 7 f]|> > 0 is continuous we conclude as above that 7 f = 0, i.e. f is a constant. Finally,
it follows from the boundary value that f(x) = 0 for x € Q, hence w(x) = w(x) in 2, and we

have proved the uniqueness.

REMARK 3. As mentioned above this is not a proof of the existence. Consider as an extreme

example the problem

Viw = p, Poisson equation

i) F 8_w ds =@ Neumann problem on F
on

1[I - [w(x)| < Cy for x € Q,

[x[[**2] 7 w(x)|| < Co for x €

Apart from the fact that the exponent 2 has been changed to 2 + ¢ of convergency reasons, this is

a special case of 2) above.

When we integrate (R) and choose g = 1 in Green’s formula, we get that

/ {1~v2w+v1-vf}d9:/ a—wdS,
Q(R) oa(r) On

which is reduced to

/ de:/ a—wdS+/ 9w s,
Q(R) o(r) On Frar) On

73
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The former term on the right hand side is estimated by

/ 8_w dS| <
c(r) On

and the latter term clearly converges towards

4
/ | v wl|dS < R§+e 4TR? = 711-%512 —0 for R — 400,
C(R)

lim —dS /—dS D,
R=+oo Jrna(r

and we get the compatibility condition

/de:(b,
Q

proving that p and ® are not independent of each other.

Notice that if we also have a Dirichlet condition and the improper integral fQ pdS) is convergent,
then the unknown flux through the Dirichlet boundary forces that the compatibility condition is
fulfilled. ¢

REMARK 4. The example has been formulated from a physical point of view. In general, the
corresponding mathematical problem in the bounded case is described as follows:

V2w = p, in QU, Poisson,
w(x) =0, in Fo, Dirichlet,
w(x) = a, in F; for i € {i1,...,ix}, Dirichlet,
ow . . ) )

I = hi(x), in F; fori ¢ {i1,...,ir}, Neumann,

or similarly <e.g. E;_w = ho(x) in ]-"0>.
n

If the boundary conditions are only of Neumann type, we must add a compatibility condition:

/de = [ hds,
Q o0

where h(x) = h;(x) pa F;.
Notice that we do not assume that w is constant on the Neumann boundaries.

Assuming that p and h are nice functions we can prove that we have both an existence and a
uniqueness theorem for the problem. For the pure Dirichlet problem the proof is classical known.
However, if just one Neumann boundary occurs, the proof becomes very difficult. One shall e.g.
apply Hopf’s mazimum principle: In a connected domain {2 a non-constant harmonic function
w only attains its maximum values (if they exist) on the boundary 0f2, and we have at such a
maximum point

ow

a—n>0. O
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Example 3.2 Let Q be a domain in the space for a given non-constant function
g:Q— 0,400

We shall find a function w, which satisfies

(6) V2w +Agw=0 onQ°, w=0 on 9N,

where X is some constant. It can be proved that a nontrivial solution w in general only exists for some
values of A, the so-called eigenvalues.

1. Show by applying Green’s first identity that the eigenvalues are positive.

Assume that w and W are solutions of (3.2) for different eigenvalues, such that
V2w +Agw =0 w=0
pa Q°, pa 0%, A#£A.
VW +AgW =0 W =0

2. Show by applying Green’s second identity that
/ g(xw(x) W(x)dQ = 0.
Q

We say that the functions w and W are orthogonal, and g is called aweight function.
A Eigenvalue problem; Green’s first and second formulee.

D Follow the guidelines.

I 1) Choose g = g = w in Green’s first formula. Then w = 0 on 9Q and

ow

O [fovtuslvipya= [ wZas-o

We have by (6 that /2w = —\ gw, thus by a rearrangement of (7),

/||vw\|2d§2:f/wvzwdQ:Jr/\/g'wde.
Q Q Q

since w is a non-trivial solution, we must have that syw # 0 (w is not a constant), and

/||Vw\|2dﬂ>0 and /g-w2d9>0,
o Q

hence

_ Joll v w|?dQ

\ =
Jo g w?dQ

is defined and positive. It follows that every eigenvalue A is positive.
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2) Let w and W be non-trivial solutions for different eigenvalues A and A. Then apply Green’s
second identity, using that w and W are zero on 09X,

/{vaW—WVZw}dQ:/ w9l 4y,
o) o0 on on

Hence,

/vaWdQ—/WVdeQ=O.
Q Q
Since
W = —AgW og Viw=—-Agw,

it follows by insertion that
0=—/wAngQ—i—/W)\gwdQ:()\—A)/wadQ.
Q Q Q

As X #£ A, this implies

/ g(x) w(x) W(x) d2 = 0
Q

as requested.
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Example 3.3 Let m be a constant. consider a function f : R?> — R, which satisfies
flrx)=71"f(x)

for every x and for those values of T, for which ™ s defined. We say that such a function is
homogeneous of degree m.

1) Show that if f is also differentiable, then
x-Vf(x) =m[f(x).

2) Show that if f furthermore is harmonic, then

[ avspae=" s
K(x;a) a JoK(0;a)

A Homogeneous functions of degree m.

D The first question follows by differentiation of the definition with respect to 7. In the second
question we apply Green’s first identity.

I 1) When we differentiate f(7x) = 7" f(x) with respect to 7, we get

7" ) = AL f(rx) = x- (7).
Now, put 7 = 1. Then
X7 (x) = m ().
2) By Green'’s first identity,

0
[ s+ wnaa= [ 45 as
Q o on
Choose 2 = K(0;a) and g0f. Since f is harmonic, \72f = 0, it follows that

of
[ awspde= [ pilas,
K(05a) 0K (0;a) n

We have on the sphere that x = an, hence by 1),

of _ 1 _m

5 =0 V) = —-xf(x) = — f(x).

/ v f2da="" 7 ds.
K(0;5a) a OK (0;a)

REMARK. We strongly exploit that € is a ball of centrum 0. ¢
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4 Curvilinear coordinates

Example 4.1 Let P,(x,y, z) be a homogeneous polynomial of degree n. Then in spherical coordinates,

oP,
In _"p o po.
or r

1) Prove this by first noticing that we can write
Ry (z,y,2) =71"g(0,¢).

2) Show that if P, is a harmonic function, then the function

Pn(xa:%Z)
Qn(x7y7'z):Wa T#O»

is also harmonic.
A Homogeneous polynomial as an harmonic function in spherical coordinates.
D Follow the guidelines.

I 1) We have in spherical coordinates,

= THngk,e,m(@, <P)-

hyt™ = 1" g1(0,0) 10 g2(0,0) -1 g3(6, )
In an homogeneous polynomial all such terms satisfy
kE+l+m=n (= the degree),
thus by addition,
Pp(z,y,2) =r"g(0,¢).
Hence for r # 0,

or, .4 n o, n
5, = g,0) =" g(0,0) = P
2) From
1
VT:;Xv T#Oa

follows that

thus

a—4 2

V() = vy () =v-{ar*?x} =ala—2)r" " x-x + 3ar®

= ala—2)r*"*r?2 £3ar* % = ala+ 1)r* 2

Let P, be an homogeneous polynomial of degree n, which is also harmonic, i.e. V2P, = 0, and
let

Po(z,y, 2
Qn(xayaz):%’ r#0.
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Choose av = —2n — 1. Then we get for r # 0 that
VQn = V-V (Pn -r_2"—1) =v- {VPn el Py (,,,—211—1)}
= VzP" P L ) v P, (7,.—271—1) +P,- V2 (7’_2”_1)
= 2y P,-x(=2n—1)r2"3 4P, - (=2n—1)(—2n)r 23
= 2@2n+1)r 23—y P,-x+nP,}.
If K+ ¢+ m =n, then

v(xkyézm) : (J},y,Z) = (kxk717€y2717m2m71) ' (l”%z)

= (k+L+m)zFy’e™ = nakytzm.

By adding all such terms we get
Vpn X =N P’I’L7
hence by insertion 72Q,, = 0, and we have proved that @, is harmonic.

REMARK. In the open octant, where x > 0, ¥y > 0 and z > 0, the proof is carried over
unchanged, even if k, £, m and n are not integers. Another immediate extension is to negative

integers, et.. ¢

Example 4.2 We introduce the so-called spheroidal coordinates (0,1, @), where ¢ has the usual sense,
by the following equations expressed in the rectangular coordinates,

x = a sinhn sind cos p, y = a sinh 7 sin sin ¢, z = a coshn cos .
1) Describe the coordinate surfaces and find the intervals of n and 9.

2) Show that (n,9,¢) are orthogonal.

3) Find the metric coefficients.

4) Show that the function f(n,¥, ) = Intanh (g) 18 a solution of Laplace’s equation.

A Spheroidal coordinates.
D Apply the description on any given textbook.
I 1) Let n # 0 be fixed. Then it follows from

2% 4 y? = a®sinh® 1) sin? ¥, 22 = 4% cosh® ) cos® ¥,
that
22 4 ¢ 52

=1.
(a sinhn)? + (a coshn)?

This equation describes an ellipsoidal surface of the half axes a|sinh 7|, a|sinhn| and a cosh.
Notice that we obtain the same ellipsoid, when 7 is replaced by —n, and with the exception of
the points on the segment [—a, a] of the Z-axis, every point in space lies on precisely one such
ellipsoidal surface, where n > 0.
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Roughly speaking, this means that the ellipsoidal surface is inflated continuously like a balloon,
when the parameter 7 > 0 increases.

If n =0, then z =0, y = 0 and z = a cos ¥, which describes the segment [—a, a] on the Z-axis
run through once if ¥ € [0, 7].

We hereby obtain the level surfaces 1 > 0 where 7 = 0 is the generated case, and the n-interval
is [0, +o0].

It also follows from the above that ¢ € [0, 7].

Now notice that if ¥ = 0, then = 0, y = 0 and z = a coshn, which for n > 0 describes the
half line [a, +o0[ on the Z-axis run through once.

Ifv e ]O, g [ is fixed, then z > 0, and we get by eliminating n and ¢,

- 2 a4y ,
(a cos?)? asind)2

o
Qacha?

it’s an interesting world

Get under the skin of it.

Graduate opportunities
Cheltenham | £24,945 + benefits

One of the UK’s intelligence services, GCHQ’s role is two-fold:

to gather and analyse intelligence which helps shape Britain’s
response to global events, and, to provide technical advice for the
protection of Government communication and information systems.
In doing so, our specialists — in [T, internet, engineering, languages,
information assurance, mathematics and intelligence — get well
beneath the surface of global affairs. If you thought the world was

an interesting place, you really ought to explore our world of work.

= www.careersinbritishintelligence.co.uk

T0P 100 [

s PRI

Applicants must be British citizens. GCHQ values diversity and welcomes applicants from
all sections of the community. We want our workforce to reflect the diversity of our work.

D&

Download free books at BookBooN.com

80


http://bookboon.com/count/pdf/346359/80

Calculus 2c-10

Figure 11: The meridian curves extended to the whole plane for a = 1.

which describes the upper net of an hyperboloid of two nets and “half axes” a|sind|, a|sin|
and acos 1}, where we have used absolute values to support the following, although this is not
necessary.

It e } g, 77[ is fixed, then 2z < 0. When we eliminate 7 and ¢ we again obtain (8), and we get

the corresponding lower net as level surfaces.
If 9= E, then
2
x =a sinhn cosyp, y=asinhnsingy, z=0,
which (put ¢ = a sinh ) runs through the plane z = 0, so this is the level surface of ¥ = g

If 9 = 7, then £ =0, y = 0 and z = —a coshn, which describes the half line | — 0o, —a[ on the
Z-axis.

By a continuity argument it follows that every point in space lies precisely on one of these level
surfaces (degenerated for ¥ = 0 and ¥ = 7).

If » € 0,27 is kept fixed, we get a meridian half plane, when 7 > 0 and ¥ € [0, 7] vary.
As a conclusion we have described the level surfaces,and the intervals are

n € [0, +o0, ¥ € [0, ], v € 0,27

Clearly, the meridian half planes are orthogonal to the other level surfaces.

Until 40 years ago it was even known in high school that the hyperbolic system and the
elliptic system are orthogonal. This may perhaps no longer be the case. Instead we get by a
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computation
Or . . . .
e a(coshn sind cos ¢, cosh ) sind sin ¢, sinhn cos ),
n
Or . . . .
9) 5~ a(sinhn cos ) cos p,sinhn cosd sin p, — cosh n sin ),
Or . . . . .
90 = a(—sinh 7 sin¥ sin @, sinh n sin ¥ cos ¢, 0).
¥
Hence
Or Or 2 . . 2 ) . .
5 99 = a*{sinh 1 cosh 7 sin ¥ cos ¥(cos” ¢ + sin” ¢) — sinh n cosh 7 sin ¥ cos I}
n
Jr Or 2 . .92 . . . 92 .
o e a“{— sinh n cosh77sin“ ¥ sin ¢ cos ¢ + sinh 7 coshn sin” ¥ sin ¢ cos @}
n o op
or Or 9 .2 . . L2 . .
9% = a*{—sinh” 1 sin ¥ cos ¥ sin p cos ¢ + sinh” n sin ¥ cos I sinp cos p}
n oy

=0.
We have now proved that (1,9, ¢) are orthogonal.
3) It follows from (9) that

2 81‘ ar
R = .=
on on
= a? {Cosh2 n sin? 9 cos? ¢ + cosh? n sin® ¥ sin? ¢ + sinh? ) cos? 19}
a’ {cosh2 n sin? ¥ + sinh? 7y cos? ¥ cos? 19} =a? {sin h2n + sin? 19}
= a? {cosh2 n — cos? 19} ,
K2 = @ @
SR )
= a? {sinh2 n cos? ¥ cos® o + sinh? 7 cos? ¥ sin? ¢ + cosh? ) sin? 19}
= a? {sinh2 n cos? ¥ + cosh? ) sin? 19} =h?=a? {sinh2 n + sin® 19}
= a2 {cosh2 n — cos? 19} ,
h: = or or
dp O

= a? {sinh® 7 sin® ¥ sin ¢ + sinh® 7 sin® ¥ cos® o}
= a®sinh® 7 sinh?¥.

For n > 0 and 0 < ¢ < 7 the metric coefficients are

hi = hgy = a\/sinh2 n+sin?y and hs = a sinh7y sind.
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4) Since f(n,d,¢) = Intanh (g) is independent of ¥ and ¢, we have

p_1of  vof vof _1of 1 1
VM M T 002 Ty 90 T ko ™ T hy sihg oV
because

of 1 1 1 1

1
&1 tanh () " cosh? (1) "2 2sinh (2)cosh (Z)  sinhp’

Hence, the coordinates are with respect to the new system,

1
(Vlv‘/Za‘/S)_ <thnh77’O’0>’

thus
Vo= v-vf
1 0 0 0
= { (hohsV1) + hshyVa) + 70 (h1h2V3)}

hihohs | On BX) (

N 1 0 h2h3
" hihghs a_n< hy 'smhn)
1 0 (asinhn sind
hihshs On ( sinh 7 ) h1h2h3 a_n

and the claim is proved.

sind = 0,

REMARK. By a similar argument we see that

1 1 —cos®
9(77719790)—§1H<m>, 0<d<m,

satisfies Laplace’s equation. ¢

Example 4.3 Let (u,v,z) be an orthogonal cylinder coordinale system, the metric coefficients of
which satisfy h, = h,. Prove that the functions

F(u,v,z) = a+ Bu, G(u,v,z) = e cos(yv),

a, B, v being known constants, satisfy Laplace’s equation.
Find more similar solutions of Laplace’s equation.

A Orthogonal cylinder coordinate system. Laplace’s equation.
D Apply the Laplace operator.

I Since the cylinder coordinate system is orthogonal, we have h, = 1. When we set up the Laplace
operator it then becomes a question of making the right identificcations:

h1:h2:hu:hv and h3:1,
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thus

2p _ L [0 (hahg 0F\ O (hshi Of
v a h1h2h3 8u hl 8u 8 1}
f

L9 (hahe OF
ho 0z \ hy 0z

_ L [0 (hOf hyOf\_ O (hOf

~ h2 | 0u \hy Ou  hy Ov 8182

1 (erf of

= h—u{w+87+&<h a)}

Any function, which only depends on u and v, and which is harmonic in these variables, must
satisfy the Laplace equation. This is trivial for F(u,v,z), which is a polynomial of degree 1.
Furthermore,

[

[

2 2
O Y 2G(u,2) ~7%C(u,2) =0,
so the claim also holds for G(u, v, z).

As mentioned above, any harmonic function in (u,v) and independent of z satisfies Laplace’s
equation.

o
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REMARK 1. With the knowledge of Complex Function Theory one obtains the harmonic functions
by taking the real part or the imaginary part of an analytic function. ¢

REMARK 2. If we do not know h,, = h,, it is not possible to find the solutions of Laplace’s equation
which also depend on z. ¢

Example 4.4 Assume that the constants o, 3 satisfy § > « > 0. Consider for fixed (x,y,z), where
xyz # 0, the auziliary function

F(t) = 2?(t—a)(t—B)+yt(t—p)+2%t(t—a)—t{t—a)(t—F), teR.

1. Find F(0), F(«) and F(B). Then sketch the graph of F and show that the equation F(t) =0 has
three different roots u, v, w, which satisfy

Il<u<a<v<f<w.

Hence, for every (x,y,z) with xyz # 0 we obtain a set (u,v,w). These are called the ellipsoidal
coordinates of the point with respect to the constants o and (3.

2. Show that the coordinate surfaces (in the (x,y, z)-space) are parts of the following surfaces:

e cllipsoids for w constant,
e hyperboloids with 1 net for v constant, and

o hyperboloids with 2 nets for u constant.

3. Show that
F(t) = (u—1t)(v—1t)(w—1),
and then derive the expressions

L2 uow 2 = (@a—u)(v—a)(w—-a) 2 (B-u)(B-v)(w-PF)
ap’ a(f —a) ’ A6 - a) '

Thus, the transformation to the new coordinates is not injective.

4. Show that the new coordinate system is orthogonal.

5. Show that the metric coefficients are given by

1 [
h"_2\/U(a—U)(ﬂ—U)’
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o 65\/15 2 25 3 3

Figure 12: the graph of F(t), whenz =1,y =0,5, z=0,8 and a =1, § = 2.

A Curvilinear coordinates.
D Apply the theory.
I 1) Clearly, F(t) is a polynomial of third degree and
F(0)=aB2® >0, F(a)=—a(B—-a)y*<0, F(3)=p3(8—a)z*>0.
Also,
lim F(t) =400 og tiieroo F(t) = —cc.

t——oo

Since F(t) is continuous we conclude from the variation of the signs, cf. the figure, that there
are three different roots u, v, w, which satisfy

I<u<a<v<f<w.
For each (x,y, z) where zyz # 0 we have precisely one such set (u,v,w).
REMARK. It follows that (£z,+y,+z) with zyz # 0 for each of the eight possible choices of
the signs give the same set (u,v,w), so the transformation is not injective, cf. 3). ¢
2) a) When t = w, we get F'(w) = 0, hence by a rearrangement
(w—a)(w— B)2® + w(w — B)y? + w(w — a)2? = w(w — a)(w — B).

From w > 3 > a > 0 follows that all coefficients are positive, hence we see by a continuous
extension to the coordinate planes x = 0, y = 0 and z = 0 that the coordinate surface is an
ellipsoid.

b) Similarly, we get for ¢ = v that F'(v) =0. As 0 < a < v < 3, it follows by a rearrangement
that

(v—a)(v—B)z* + v — By +v(v—a)z? =v(v—a)v—pB).
Hence by a change of signs, such that all terms are positive, with the exception of —v(v—a),
(v —a)(B —v)a? +v(B —v)y? —v(v —a)z® = v(v —a)(B - ),

corresponding to that (the continuous extension of) the coordinate surface is an hyperboloid
with 1 net.
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c) Ast=wu gives F(u) =0, where 0 < u < a < 3, it follows by a rearrangement that
(u—a)(u—B)2? +u(u— B)y? +u(d —a)z? = u(u—a)(u — ),

corresponding to that (the continuous extension of) the coordinate surface is an hyperboloid
of 2 nets. (The right hand side is positive and the coefficient of 22 is positive, while the
coefficients of y? and 22 are both negative).

3) Since F(t) is a polynomial of degree 3 with the coefficient —1 of 3, and if u, v, w are the three
roots, then

Fit)=—-(t—u)(t—v){t—w)=(u—1)(v—1t)(w-—1).

It follows from 1) and this alternative description that

F(0) = aﬁJCQ = uvw, hence 2 = w7
ap

and
F(a) = —a(f —a)y* = (u—a)(v — a)(w — a),

hence

o~ a)
and
F(B) = B(8 - )2 = (u— B)(v — B)(w — B),
and thus
o W=BE-Aw-5) _(B-u)B-)w-5
55— a) 35— )

4) Tt follows from the results of 3) that

2
o”) _,, 0r _ww
ou ou af

02 _ 1 on(a) [ 28 vw _ sien(@) Jow
au 28N Yow af 2y/aB N u’

Due to the symmetry we can interchange the letters, which gives

Oz _ sign(z) [uw Oz sign(m)\/u_T
o 2B\ v’ ow  2y/aB \ w’

Furthermore,
00> _, By (v-a)w-a)
ou Y ou alf—a)
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hence

9y
ou

(v—)(w = a)

?

sign(y)
2/a(f — )

a—Uu

and similarly (NB: change of sign!)

9y _
ov - 2,/a(f — a)

Jy

ow

sign(y)  [(a—uw)(w—a)

v —a« ’

sign(y)  [la—w(v—a)

“2aB-a)¥  w-a
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Finally, we get in exactly the same way,

0z _ sign(z) (B —v)(w—P)
ou  2/B(B - a) f-u

9: _ sign(z)  [G-ww-p)
v 2,/B(6-a) f-v 7
0: s [Bow@-v)

w - nBB-a\ w5

According to the theory,

dx = hya,du + hya,dv 4+ hya,dw,

where it follows from the above that

sign(z) [vw
A
_(0x By 02\ 1| _ sign(y) (v—o)(w—0)
huau—@’a—u’a)—a o —a) a—u
 sig(s)  [B-o@=7)
BB —a) f-u
sign(z) [uw
e
Ox Oy 0z 1 sign(y) (o —u)(w—a)
hvé‘vZ(%%%)ﬁ G —a) v—a
~ sign(2) (B —u)(w—pB)
BB — a) f—v
sign(z) [uv
VaB \ w
Ox Oy Oz 1 sign(y) (= u)(v—a)
hwaw(%v%%)—i cB-aV w-a
sign(z) /(B —u)(B—v)
BB~ a) w—p
Thus
B l W w-o w—fF
R AT = =)
_ 1 w. f—-—a—-FB+a a p
1o - il S e T

b-o

89
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huau'hwaw%{v v — o v—pf }

of alB-a)  BB-a)
hoa, - hya —l{i— u—a , u-f )—0
et =3 as e T AG-a) T

where we in the latter two calculations have used that they have the same structure as in (10),
only with v or u instead of w.

=0,

Since hyhyhy, # 0, we conclude from the above that
a, -a, =0, a, -a, =0, a,-a, =0,

and the new coordinate system is orthogonal.

5) Finally, we derive from the results of 4) that we get (11), i.e.

o (2 o o\
v ou’ Ou’ Ou

‘ = hyay - hyay,
11 vw 1 (v—a)(w—a) 1 (B—v)(w—0)
{aﬁ U Jra(ﬁ—oz) a—u Jrﬁ(ﬁ—a) B—u

)

(v—a)(w—a) N u?vw Ié; _a(vtw)u(f-u) a?u(B—u)
a(f-a) " a(B-a) aB-a) " aB-a)’
(B—v)(w—-p5) u(o— ) = wvow & ow+ Blvtw)ula—u)  [Pula—u)
BB —a) BB—a) BB-a) BB —a) BB—a)’

so the latter factor {---} of (11) can now be written as

R e R el R e e R a>}

+ow + (é]+;y){—(6—u)+(a—u)}+u{ﬂaﬁa—ﬁaﬁa}—i-u{ = ot }

B 1 3 a atB B2

_usz{a_ﬂ_aﬂ(ﬁ—a)+aﬁ(ﬁ—a)}+ww{ 25 " ab—a }”w
ML 0+

=u? — (v wu+ovw=(u—2)(u—w)=(v—u)(w—u),

which by insertion into (11) gives

, 1 (- ww-uw
(e R P (™
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and we have proved that

o<hu:§\/<v—“><w—u>

u(or —u)(8 —u)

By comparison of the expressions of h,a,, hya, and h,a,, we see that there is some form of
symmetry:

Put w into the denominator of h,a,; similarly, put v in the denominator of h,a,, and put w into
the denominator of h,a,. Thus, we almost get the expressions of h, and h,, by interchanging
the letters. The only additional complication is that all the factors shall be positive. Taking
also this into account we finally get

1 (oo 1 [ —w
e o 2\/w(w—a)(w—ﬁ)'

ALTERNATIVELY, just repeat the computations above. One immediately gets (11) by inter-
changing the letters u, v, w, so in the remaining part of the argument we shall only identify
the coefficients (functions of « and ) in a polynomial in u, v, w.

Example 4.5 Here we construct a variant of the spherical coordinates (r,0, ) by putting
r=ae, EeR,

while 0 and ¢ are kept as previously. Clearly, the new system (&,0,¢) is orthogonal. Find its metric
coefficients he, hg, hy.

A Curvilinear coordinates.

D Write the rectangular coordinates in the new ones via the usual spherical coordinates, and then
compute the metric coefficients.

I It is well-known that

x = rsinfcosg = aefsinf cosp,
y = rsinfsing = aefsinf singp,
z = rcosf = aefcosh.
Hence
Or
o
o€ ’
Or . .
% - aef(cosf cos,cosf sin p, —sin §),
Or
— =aefsinf(—si 0
a e sin sin @, cos ¢, 0),
a0 (—sin g, cos ¢,0)
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or
9¢
or
a0

or
o

‘ = aefsinb.

Example 4.6 The so-called six ball coordinates (u,v,w) are introduced in the following way:

x

U= —,
r2

1) Describe the coordinate surfaces.
2) Find u? +v? + w?, and then express (z,y, 2) by means of (u,v,w).
3) Show that the coordinate system (u,v,w) is orthogonal.

4) Compute the metric coefficients hqy, hy, hy.

A Curvilinear coordinates in R3 \ {(0,0,0)}.

v =

Y
r2’ r

D Identify each concept. We shall everywhere not consider the point (x,y, z) = (0,0,0).

I 1) When u =0, we get =0 (a plane).
When u # 0 is constant, then

SIS

) 1 1
= —2._.1;_‘__
2u

+yP+27 -

1
The coordinate surface corresponding to u # 0 constant is the sphere of centrum <2— , 0, 0)
U

and radius

1
|2u

Similarly, we get for v = 0 the plane y = 0, and for v # 0 constant we get

x2+<y—

1
i.e. the sphere of centrum (O, 25 0) and radius —
v

2
1 2
%) + 27 =

92
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Finally, w = 0 corresponds to the plane z = 0, and when w # 0 is a constant we get

1\? 1 \?
2 2 o _ -
vy *(Z 2w> (|2w|> ’

1 1
thus the sphere of centrum (0, 0, — | and radius —.
2w [2w]

2) A small computation gives

24 2 2_l(2+ 2y 2)_ﬁ_i
u’ + v w—r4x Y+ z = 3=
thus
r? = !
u? + v2 + w?
Then
x=r? Y y=riv= v

.
. .
A\
iy \‘.‘ <
27\
(27777 XX/ b

Llle
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3) Tt follows that

or 1 2u? —2uv —2uw
ou  \wr+ 4w (W2 +02+w?)? (w4 v+ w?)? (u? 4 02+ w?)
1

2 2 2
g e (T R 2w —2uw),

and similarly,

or 1 (—2
— = (—2uv,u
v (u?+ 02+ w?)? ’

2 _0? +w?, —2vw),

or 1 5 o 9
S = T e (—2uw, —2vw, u? + v° — w?).

Hence

2ya Or Or 9

(u? + 0% + w?) 5 Do —2uv(—u? +v* 4+ w?) — 2uv(u? — v? + w?) + duvw?

2uv {—21112 + 2w2} =0,

Or or
proving that — and — are orthogonal to each other.

ou ov

Jdr Or Or
We conclude by the symmetry that —, — and —— are pairwise orthogonal, and we have

ou’ v ow

proved that (u,v,w) is orthogonal.

4) According to the above,

1
h: = H 2+ n 2) {(—u2+v2+w2)2+4u2v2+4u2w2}
(W2 +v2+w
= m{ —2u® (v +w?) + (v +w?) +4u* (v +w?) }
1 2 242
(u? + 0% + w?)* (u + 0 +w)’,
ie.
hZ = .
T (W2 4 02 + w?)?
and hence
ho_ 1

u? + 02 +w?’
Then by the symmetry

1 1
hy= ——— and hy= — .
u? + v2 + w? an u? + v2 + w?
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Example 4.7 We introduce a set of curvilinear coordinates (§,n,p) by

. 1
r=gneosg, y=L&nsing, 2= (& —n7),
0<E< 400, 0<n<+oo, 0< <2
1) Show that this defines a rotation coordinate system.

2) Describe the coordinate surfaces, in particular the degenerated ones, &€ =0 and n = 0. Sketch the
meridian half plane.

3) Show that the coordinate system (§,m,p) is orthogonal.
4) Compute the metric coefficients he, hy, hy.
A Curvilinear coordinates.
D Identify each concept. Apply the theory concerning the relevant formulse.
I 1) First, ¢ is eliminated by

2® +y? = (&n)?,

and we see that z does not depend on ¢ at all, thus (£,7, ¢) is a rotation coordinate system.
2) When £ =0, then z =y =0 and z = —% n?, hence the “coordinate surface” degenerates into

the negative Z-axis.

1
Similarly, whenn =0 we get t =y =0and z = 3 &2, thus the “coordinate surface” degenerates

to the positive Z-axis.

Assume e.g. that £ # 0 is constant. Then

1
2yt =7, dvso g’ = 5 (@ +yP),

£
hence by insertion
_ 1o 2y _ Lo Lo 2
2=5E ) =5 5¢z (7 +v7).

1
This is the equation of a paraboloid of revolution of vertex 3 €2 and with the Z-axis as the
axis of revolution.
1

2 (z? + y?), thus

Assume that 1 # 0 is constant. Then &2 =

2

_1 2 2\ 2 2 1
2=5(¢ 77)—2772(0: +y) g

1
which is the equation of another paraboloid of revolution of vertex —3 n2.

For ¢ constant we obtain a plane through the Z-axis with e.g. the normal vector (— sin ¢, cos @, 0).
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3) We first
Or
i3
Or
an
Or
dp

compute
= (n cosp,n sinp, i),

= (£ cosp,& sinp, —n),

= (=&nsinp,&ncosp,0) = {n(—sinp, cos v, 0).

We derive from these formulse that

Or
23
Or
23
or
on
and the
4) Finally,

0

T o= et o bnsinp— =0

an

Or 9 . .

o En*(—sing cos ¢ +sing cos ) +0 = 0,
¥

or 9 . .

i &°n(—sinp cosp +sinp cosp) +0 =0,

2

coordinate system (u,v,w) is orthogonal.

= ‘gz = V2 + &=+,
- |5 -vere
= &

96
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5 Examples from Electromagnetism
Example 5.1 We consider the following equations for the stationary magnetic field,
vxH=H, B=v xA,
where B is the magnetic fluxz density, H is the magnetic field intensity, A a magnetic vector potential,

and J the electric flow density; the latter is only different from the zero vector in a bounded part of
the space. We shall also assume that

r2|H||, »%||B]|, r'||A|| bounded and B -H > 0.
One can prove that we can attribute to the field the energy

1
WM:/§B~HdQ,

where we integrate over the whole space. Show by partial integration that this integral is convergent
and that

1
WM:/iJ-AdQ,

where we shall only integrate over the bounded part of the space, in which J # 0.
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A Nabla calculus and Electromagnetism.
1 1 1 1
D Show that [ 3 B -HdQ and [ 3 A - JdQ) both exist. Then reduce 3 B-H- 3 A - J. (This dirty
trick is equivalent to a partial integration).

I Formally, we must assume that all functions and vector functions are of class C'! in all of R3 and
that they are in particular finite in 0. If J = 0 for » > Ry, then

1 1 1 47R3?
/—A-JdQ‘ < —/ JA] -1 J]dr < = - T max [JA(x)| - max [|J(x)] < +oc.
2 2 JK(0;Ro) 23 IxlI<Re l[x<Ro
By using spherical coordinates we get for R > 1,
1 1 1
/ -B -HdQ| < —/ r?|B| - 2| H| - = d
K(0;R)\K(0:1) 2 2 Jko:r)\K (0:1) r
By, 1
< C : o dr==C_ lfﬁ < C,
where C' is independent of R, and it follows that the integral is convergent.
It follows from the definitions that
B a-lag-twxa) H-IA (yxH =1 v.(AxH)
2 ot TV g MW HEITV ’
thus by Gauf)’s theorem
1 1
(11)/ —B-HdQ—/ —A-JdQ
K(0;R) 2 K(0;R) 2
1
:—/ V-(AxH)dQ:/ n- (A x H)dS.
2 Jk(o:R) OK(0;R)
Here we have the estimate
R||A| - R?|H
[ wames [ RIALREL,
9K (0;R) K (0;R) R
<C ! areal(0K(0; R)) = C i C ! 0 for R — 400
o —_ . = o —_— = - —_— — .
= R3 ) 1 R3 1 R

Thus by taking the limit R — +o00 we get from (11) that
1 1
-B-HdQ — —A-JdQ =0,
R3 R3 2
hence by a rearrangement,

1 1 1
Wy = —B-HdQ = —A~JdQ:/ —A-Jd)
R3 2 R3 2 K(0;R)

as required
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Example 5.2 We have for a material which is not in an electric sense an ideal isolator,

@—0, D=al,

-D:~ . =
\V4 0, VJ+at

where D is the electric flux density, J is the flow density, and ¢ is the charge density, while « is
a scalar field, which describes the electric properties of the material, and t is the time. We further
assume that we are in a stationary case and that we are given a current distribution, so J is a known
vector field.

Find an expression of o.

A Nabla calculus and Electromagnetism.
D Analyze the equations, when J and « are given.

I We first derive that

0=v -D=v (ad)=(va)- J+av-J.
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Since we are in the stationary case, we have

0o
o0
hence
do
.J —_— =
\V4 +8t 0

implies that 57 - J = 0. Finally, by insertion,

0=(va)-J.

Example 5.3 Considering potentials it can be proved that the electric field intensity E and the mag-
netic flur density B can be derived from a scalar potential V and a vector potential A in the following
way:

0A

B=vxA E=-—— —yV.
VXA, 5~ vV

We also have equations of the same form with another set of potentials (A, V), provided that

- dg -
V=vV-=-2 A+v
ot’ TV,

where g is a scalar field. We notice that the potentials are not uniquely determined, so it is natural to
set up an extra condition on the potentials. One often applies the so-called Lorentz condition

ov
A+ —=0.
VoAt 0

1. Derive the differential equation which the scalar field g must fulfil if one from any given set of
potentials (A, V') can create a set of potentials (A, V'), which also satisfies the Lorentz condition.

It turns up that one can solve this differential equation. We therefore assume in the following that the
Lorentz condition is satisfied, and then consider the vector field

t
Z(x,t)= [ A(x,7)dr,
to
where ty is some constant.

2. Show that if we put V = — <y -Z, then the Lorentz condition is fulfilled.

3. Then express the electromagnetic fields E and B by means of the vector field Z.
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A Set of potentials satisfying the Lorentz condition.

0
D Insert into the equations. Note that the operator — commutes with the operators v/, 3/- and 7 x.

ot
I First assume that (A, V) is given, and let g be a scalar field. If
V:V—@ and A—I—Vg,
ot
then
UXA=UXA+7xvg=B+0=B,
and
OA - 0A 0 dg
gV =gV - = Y)-E+0=E
o V=g~V 8tvg+v<8t> +0=E,

and we have proved that (A, V) and (A, V) are both a set of potentials for B and E.

1) It follows by a rearrangement that

V:f/+% og A=A—-vy,

where the set of potentials (A, V) is given. By insertion into the Lorentz condition we get

oV . oV 9%
O—V'A‘FE—V'A—V'V!J'FE*'W,

and we derive the requested differential equation

0%g %
2. 2 J — . -
VI ge VAT

where the right hand side is known. This is a classical inhomogeneous wave equation in three
space variables and one time variable.

2) Assume that only the vector field A is given. Put

i 0Z
Z(x,t)= | A(x,7)dr, EZA’ og V=-—x-Z
to
Then
ov 0 0Z
VAt =V A-2(VZ)=VA-V =V A-V A=0,

and the Lorentz condition is fulfilled.
3) The set of potentials (A, V) above defines (expressed by Z) the fields B and E by the formulee

0Z 0
B—va—vxg_a(vxZL
and
0A 0%Z

EZ—E—VVZ—W‘FV(V'Z)-
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Example 5.4 On the figure we are given a normal cut in a double wire consisting of two identical,
parallel, conductive strip of breadth b and distance a. In the strips are flowing two opposite equally
distributed flows. Assuming that the two strips can be considered as infinitely thin and that the per-

meability p has the same value everywhere one can show that the inductance of the wire per length L
is given by

=" /Ob{/obln—Wdy}dg.

Tomh?

Consider this as an improper plane integral and find L.

05

02 04 06 08

Figure 13: Double wire of distance a and length b.

A Tmproper plane integral.

D Split the integrand into two parts which each are integrated separately. There is no problem with

the first of these integrands. Considering the second one we smooth out the singularity by the first
integration.

05 1 15

Figure 14: The domain of integration B = [0,b] x [0,b] for b = 2 in the (y, §)-plane.
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I Here, B =[0,b] x [0,b] in the (y, §)-plane, and the integrand is not defined for § = y. We shall first
find an integral of

a2+(y7g)2 1 2 2 1 N
In|+————|=-hn@+Wy—9)°)—=nly—y
i S (@ + @ —9)?%) -5 ly—3

for y fixed and y # y.

1) When y € [0,b], then L In(a? + (y — §)?) has no singularity, so we get by a partial integration
/% In (a” + (y = 9)°) dy
:%(y—ﬂ) ln(a2+(y_g)2) _%/(y—g)-%
— 5= D) (e + (- 7)) - / az;(f(yg_)?g)?az
- %(y—g) ln(“2+(y—37)2) —y + a Arctan (y;g) .

Sharp Minds - Bright Ideas!

FOSS

Employees at FOSS Analytical A/S are living proof of the company value - First - using The Family owned FOSS group is
new inventions to make dedicated solutions for our customers. With sharp minds and the world leader as supplier of
cross functional teamwork, we constantly strive to develop new unique products - dedicated, high-tech analytical
Would you like to join our team? solutions which measure and
control the quality and produc-
FOSS works diligently with innovation and development as basis for its growth. It is tion of agricultural, food, phar-
reflected in the fact that more than 200 of the 1200 employees in FOSS work with Re- maceutical and chemical produ-
search & Development in Scandinavia and USA. Engineers at FOSS work in production, cts. Main activities are initiated
development and marketing, within a wide range of different fields, i.e. Chemistry, from Denmark, Sweden and USA
Electronics, Mechanics, Software, Optics, Microbiology, Chemometrics. with headquarters domiciled in
Hillered, DK. The products are
We offer marketed globally by 23 sales
A challenging job in an international and innovative company that is leading in its field. You will get the companies and an extensive net
opportunity to work with the most advanced technology together with highly skilled colleagues. of distributors. In line with (=

. the corevalue to be ‘First’, the fLis
Read more about FOSS at www.foss.dk - or go directly to our student site www.foss.dk/sharpminds where

. A . X A company intends to expand
you can learn more about your possibilities of working together with us on projects, your thesis etc. pany P

its market position.

Dedicated Analytical Solutions

FOSS
Slangerupgade 69
3400 Hillered

Tel. +45 70103370

www.foss.dk

JRS s
Download free books at BookBooN.com

103


http://bookboon.com/count/pdf/346359/103

Calculus 2c-10 Examples from Electromagnetism

2) When § <y < b, we get by a partial integration
1 ~ 1 _ 1 - - -
—5 [ Wmly—gldy=—5 [In(y—9)dy=—5{(y—9)In(y —9) — (v — 9)},

which due to the order of magnitudes can be extended by 0 for y = 3.
3) Similarly, we get for 0 <y < g that

~5 [wly=aldy =5 [ W@ -y)dy=-3{- G- v - - D),

which is also extended by 0 for y = g.
As a conclusion we get from 2) and 3) that
1 1 1
—— [ Inly—gldy=—=(y—9)Inly—y|+ = (y—7
2/11\?/ gldy = =5 (y—g)nly —gl+ 5 (y - 9),

which by a continuous extension can be interpreted as 0 for y = 3.

Thus, for fixed g € [0,b] we get for the inner integral,

" (m) .
/o v~ !
~ [ -9 -y arctan (&)]_ +[-30-0 1n|y—g|+§<y—g>]b

y= y=0

In(a®+3%)—b —a Arctan (y_—b) ~+a Arctan <y)

Yy
a a
1 1 1
30 In(b—3) — 550+ 5 (0—§)+ 57,
as the singularity has disappeared.
Now put ¢ instead of §. Then
[ ’ 1 2 2 H ’1 2, 42
L = — ——(t—=0)1 t—>b dt + — —t1 t9)dt
o [{-5e-om@ v e-ofas Ay [ jon e
b b
4 1 %
— —(t—=0b)In|t —bldt — — | tintdt
+7rb2/0 2( o | 7Tb2/0 t

b b b
L t—> I t 1 1
—— a/o Arctan ( . ) dt + 2 a/o Arctan (g> dt — 7 ; 3 bdt.
By some small calculations,

/Tln(k+7)dT: %/1r1(1<r+72)d72 :%{(k+72)1n(k+72)—(k+72)},

1 1 1 1
Tln|T\dT:—T2ln\T|—— TdT:—721n|T|——7'2,
2 2 2 4

Download free books at BookBooN.com

104



Calculus 2c-10 Examples from Electromagnetism

2
/ Arctan (Z) dr = 7 - Arctan (Z> 7/;2 . 1 dr = 7 Arctan (Z) ~ % (1 + <Z> ,
a a (7’) a a 2 a
1+ (-
a
hence by insertion and convenient choices of 7 and k,

b
L = WLbQ{[—i(aQ—i—(t—b)Q)ln(aQ+(t—b)2)+i(a2(t—b)2)}

b

t=0
_1 2 2 2 2 1 2 2

+ | = (a“+t*) In(a”+t°) — = (a”+t7)
| 4 4 —o

1 2 1 2
+ |7 (t=b) ln(b—t)—g(t—b)]

b b
1 L
+ [——tQ Int+ - }
t=0 4

+ - —a(t—b)Arctan (tab> +72 hl( < )]
s (2)- o (2))]

+

A B e oy, Loy 1o 1o 2 32
= { 19 In(a )+4a 2+4(a +b°) In(a”+b7)
—1(a2+b2)+1(a2+62)ln(a2+b2)—1(a2+b2)—1b21nb+1b2—1b2lnb
4 4 4 4 8 4

b a?+b2
+8b2+abArctan(a)—%l ( ; )

a2 b2
+ab Arctan ( ) —In ( b > —1b2}
(

1
= %{ia Ina+ = (a +b?) In(a®4b%)— b2lnb a®In(a®+b?)
77

1 1
+a lna+2abArctan< ) 1° a’— +62)+ b2 2b}

1 1
- 2 {§a2 lna—i(a2—b2) ln(aQ—I—bQ)—§b2 Inb + 2abArctan (g) - (a2—b2)}
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Example 5.5 Change the problem of Example 5.4 in the following way: The two parallel strips are
placed in the same plane. We assume that the strips may be considered as infinitely thin, that the
flows are equally distributed and that the permeability v is constant. The breadth is denoted by b and
the distance by a, cf. the figure. It can be proved that the inductance per length L of this wire is given

by
zath g
/ In — dx p dT.
lg |£L'—.’E‘

1a+b
£:L :
w2 J1,
2

2

We consider this as an improper plane integral and want to find L. It will be convenient to apply the

quotient o = % and introduce the new variables (£,m) by putting

1 1
x:§a—|—bf, £:§a+bn.

E) 5 v § p

Figure 15: The parallel strips are represented by the intervals [—2,—1] and [1, 2], corresponding to
a=2andb=1.

A Tmproper plane integral and Electromagnetism.

D Sketch the (z,Z)-domain and the (£, n)-domain and indicate where the integrand is not defined.
Then transform the improper integral into the (£, n)-space.

I It follows from g <gz= % + b€ < g + b that 0 < £ < 1, and similarly, 0 < n < 1. Furthermore,
T = x corresponds to & = 7. Finally,

S e+ 24
gH_j:§+f+§+77:a+b(§+n):a+§+n>l
|z — 7| g—i—bf—%—bn bl§ — 1 1€ —nl ’

2

thus the integrand is positive, and one does not need to be too careful in the computation of the
improper plane integral: Either we get +o00, or the right value.
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Figure 16: The domain in the (z, Z)-space.

We find

1 a sth g T /1 a+&+n
= — —+b 1 dr p dr = — In| —————) bd§ ; bd
STl {/ o=l ””} T Sy U M Tle—ar ) V0
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Figure 17: The domain in the (&, n)-plane.

Here,

/O{In(a+£+n)d§}dn=/0 [(a+&+n)In(a+E+n) — (a4 &+n)lgodn

:/0 {la+14+n)hnla+1+n)—(a+n)In(a+n)—1}dny
1

1 1 1 1
— [2(a+1+n)2 1n(a+1+77)—1(a+1+n)2 —i(oﬁ-n)Q ln(a+n)+z(a+n)2 -1
n=0

. %(a+2)2ln(a+2)—i(a+2)2—%(a+1)2ln(a—l—l)—l—i(a—i—l)Q

1 1 1 1
—§(a+1)2 ln(a+1)+z(a+1)2+§a2 lna—ZOzQ—l

1 1 3
= 5(044—2)2 In(a+2)—(a+1)?In(a+1)+ 5012 Ina— 3

Then by a symmetry argument,

[ [ wie=ndehan=2 [ { ["mia-erac} an

:2/0 [(ﬁ—n)ln(n—é)—(é—n)]gio"dn=2/0 {nlnn +n}dn

2 2 271

n noon L1

=2|=Inn— —+ — =2--=_.

{2 ne oyt 2] N 2

n—
Thus by insertion,

_ ol 2 _ 2 3.1
L = 7r{2(Oz+2) In(a+2)—(a+1)*In(a+1) 575

— % {(OZ+2)2 1n(01+2)—2(01+1)2 ln(a+1)+a2 lna—4},
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Example 5.6 For an (infinitely) long conductive cylinder with an equally distributed current I where
we assume that the permeability 1 is constant in space, we get for the magnetic flux density that

1
B_,U

2ra?

where V is the vector field considered in Example 2.14. We have placed the coordinate system such
that the axis of the cylinder is the z-axis, and we describe the cylinder by o < a. The magnetic field
intensity H is equal to B/pu.

1) Prove that Ampére’s law is fulfilled for the considered circles.

2) Show by comparison with Example 2.14 that a magnetic vector potential Ae, is given by
I 2
u_{l_(g) } o<,
4 a

1
u—lng, 0> a.
2w 0

A Distribution of a current.
D Analyze Ampere’s law. The last question is straightforward.
1) Let H denote the magnetic field intensity and I(F) the electric flow through any surface 7. Then

by Ampere’s law,

H-tds = I(F).
OF

The flow is equally distributed, so the flux density is

I
%ez for o < a,
J:
0, for o > a,

because the area of a cross section of the wire is wa?.

Now p and I are constants, so when F is chosen as a circle ia a plane parallel to the xy-plane
and of centrum of the z-axis and of radius g, then

I 2

—ZwQQZMI(g) , mnar o < a,
wa a

7{H~tds:l(]-"):

K ul

— l, nar o > a.
Ta

We have for comparison,

I 2
I L W (Q)
f 2M _ V.tds — 92 210 ul L) when ¢ < a,
K 2Ta ul, when o > a.

Download free books at BookBooN.com

109



Calculus 2c-10 Examples from Electromagnetism

We conclude that

wl
(12) j’{C <H ~ 92 V) ~tds =0,

which is trivially satisfied for

a- M v,
27a’?

If we assume that B = H, we are almost finished. However, see also the following remark.

REMARK. Since K is chosen among a very special set of curves we can strictly speaking not
conclude the uniqueness. However, the existence is obvious. ¢

2) This is now straightforward.

Example 5.7 Consider a double wire, i.e. two parallel conductive cylinders. The direction of the
generator is parallel to the z-axis. We denote the two domains in which the two cylinders intersect
the (z,y)-plane by S1 and Sa. We shall also assume the following:

The flow density J of the conductors is parallel to the z-axis, the flows are I and —1I, and the perme-
ability p is constant. It can be proved that we get a vector potential (0,0, A) by adding contributions
from the two conductors and that the inductance per length L is given by

ﬁIQ:/ JAdS+/ JAdS.
Sl S2

Show by applying the result of Example 5.6 and a mean value theorem for harmonic functions that
if we consider a double wire consisting of two equal circular cylinders of radius a and distance ¢ (> 2a)
between their axis and supporting equally distributed currents, that we have

1
=" (— + In E) .
T \4 a
A This is a fairly long example from Electromagnetism with a guideline.

D Sketch a figure. Add the vector potentials from Example 5.6 in order to find .J. Finally, compute
L by showing that some convenient function is harmonic.

I Let Sy be the disc of centrum (0,0), and Sy the disc of centrum (¢,0), both of radius a, where
c > 2a.

We have according to Example 5.6,

I 2 2
He lfx ty for 22 4+ y? < a?,
47 a?
A =
pl a’ 2 2 2
Eln(m> fOI‘JS +y Za7
and
T A/ 2
_Z_w{l_W} for (z — ) +y* < a?,
Ay =
pl a? 2 2 2
_E 1n<(1’—c)—2+y2) fOI'(J]—C) +y Za.
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-05 0 05 i 17 2

TN
AN,

Figure 18: Cross section of the double wire.

1

I
Furthermore, J; = — and Jy = -——.
Ta Ta

Therefore,
1

1
= | JAdS+— | JaA
c 12/51‘] dS+I2/S2J ds

1 1
==, Ju(A1+ Ay)dS + = 5 Jo(Ay + Ap)dS

1 I I 24y I 2
= 53 {M—(l—x ty)—ﬂ—ln(%ﬂds
1?2 ma? Jg, | 4m a 4 (x—c)?+y
1 1 ul (x—c)?+y? wul a?
= (— —— (1| +==1 ds
e ( 7ra2> /SQ{ 47 ( a? T x2+y?
1 I ul 2 +y?
L - Y ds
I wa? 47 { /51 < a?

/. fin (200 ) o (e s

The function f(x,y) = In(s? + 3?) is harmonic. In fact,

g _ and g _
or a2+ 12 oy x4y’
thus
827]“ N 1 - 42 N 29% — 222 and ﬁ B 22 — 2¢?
or2? - 2 +y2 (3;2 —|—y2)2 - (332 +y2)2 6y2 - (a:2 +y2)2’

where the latter follows by either repeating the computation above or by exploiting the symmetry,
i.e. by interchanging x and y. Then by adding the results,
*f | 0*f

22 T oy =
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and we have proved that f(x,y) is harmonic. Then

ln<(xic)2+y2>

a2
is also harmonic and we conclude that

[ (=) (2 s

2

= area(Sy)-2In (Z—2> = 4ma®In (E> .

a

Furthermore,

2 2 1 2m a 1 4
/ <1—x—zy>dS:7m2——2/ {/ 92-gdg}dgo:7ra2——2-27r(a—>zﬁa27
S a a 0 0 a 2

hence by insertion,

1 I ul T o 9 c 1 c Iz
ke T} e () -2
£ 1?2 7a? 477{ 2a+7rana 4 * " 0

=~

as claimed above.
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Example 5.8 A conductive non-magnetic ball K of conductivity v and radius a is rotating around a
diameter of the angular velocity U in an homogeneous magnetic field B, which is perpendicular to the
vector O. It can be proved that there is induced a current distribution in the ball with the density

1
Jzﬁyxx(BxU),

where x denotes the vector seen from the centrum of the ball. Find the Joule heat effect

2
P:/J—dQ.
et

A A space integral from Electromagnetism.
D Introduce a convenient coordinate system. Compute J and then J2 = ||J||2. Finally, find P.

I Let K denote the ball of centrum (0,0,0), and assume that it is rotating around the z-axis. Thus
for (z,y,2) € K\{(0,0,2)},

Yy x
C={(- ) ) 0 W,
( Vo2 +y2 a2 42 )
where we have put w = [|U]|. Hence, U is perpendicular to e, everywhere, Therefore, B = Be.,
and we have

e, ey e,
e, e
0 0 B Bw z y Bw
BXU:(U = - (may70)?
Y - /$2+y2 —y - /$2+y2
_\/x2+y2 V2 + 12
thus
e; e, e,
1 Bw
J = -vyxxBxU)==vy—— | = z
37Xk (Bx0)= g
z y 0
e, e, e, o
1 ~Bw 1 ~Bw (—2) z Cy 1 yBwz ( 0)
= o /5 5 =5 /=2 =—5 —F——=W,—7,
2 /22 + 42 2 2 g 2 /2242 vy 2 /1242
Hence
J2 J 2 1 2 2
_:H | :—7B2w222~x2+y 2y B2,
~y ol 4 2 4+y? 4
and thence
J? L o 9 2 Lo o [ o 2
P = —dQY = - yB*w de—Zwa 2%(a® — 2%)mdz
K K —a
1 @ 1 5 5
= —4B%Wr | (a2 —2Y)dz= = yB%Wn @ @ :l’szwQa‘r’
2 0 2 3 5 15
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6 Miscellaneous

Example 6.1 The plane domain on the figure S is the union of three rectangles, and it is symmetric
with respect to the y-axis.

1. Find the barycentre for each of the three rectangles.
2. Find the barycentre B for S.

The dotted line is now used as the y-axis, and the x-axis is put through B.

3. Compute the axial moment

I, = / y? dS.
S

4. Compute I, and the area of S for a = /3 ecm. The moment is given in four decimals.

A Barycentre and axial moment.
D Find the barycentre and compute the plane integral.

I Assume that S is covered homogeneously. Choose the y-axis as the axis of symmetry, and the lower
edge of the figure as the z-axis. Then all three barycentres lie on the y-axis.

1) Put S = S1US>US3, where Sy is the upper, Sy the middle and S3 the lower rectangle. Clearly,
of symmetric reasons,

1
Y1 :a—|—5a+§~2a:7a, area(S7) = 8a?,

7
y2:a+§-5a: 3% area(Sz) = 5a?,
1
Yys =50 area(S3) = Ta?,

where y; denotes the ordinate of the corresponding barycentre. We see in particular that

area(S) = (8 + 5 + 7)a* = 20a>.

Figure 19: The domain S where the dotted line is replaced by the y-axis and where the lower rectangle
has the dimensions 7 x 1, the rectangle in the middle has the dimensions 1 x 5 and the upper rectangle
has the dimensions 4 x 2. We have as usual put a = 1.

Download free books at BookBooN.com

114



Please click the advert

Calculus 2c-10

Miscellaneous

2) Let y denote the ordinate of B. Then
y - area(S) = yy - area(S1) + y2 - area(S2) + ys3 - area(Ss),

hence

a 7 1 Ta 5 1 7
3) Now put the z-axis through B. Then

7 7 43 83
Sy = [—2a,2a] x {Ga ~ 5% 8a — 20 a] = [—2a, 2a] x {% a, — a} ,

JE T D O A I T IO T L
PTG T M T T 2% 20 “20 )"

Ss = fzaza X fzafga
P27 207 20 |’

and the axial moment becomes
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I, = /yzdS:/ y2ds+/ y2d5+/ y>dS
S Sl Sz SS

3755 @ 3795 @ 37364
= 4a [y_] —&-a[y—] + Ta [y_}

3)as, 3| s 3] _m,
20 20 20

a’ 83\ ° 43\ /43\* /57\° 57\ 77\
= 24 Z2) —4( = - =) (= 7=

3 { (20) (20) +(20) +(20> (20) + (20)

4

= ﬁ{4'833—4~433+433+573—7-573+7~773}

at 4133200 10333
= 4.833 773 -3.433 —6-573) = 4 _ 4

24000{ 83% +7-77°—3-43° —6-57°} 51000 ° G0 ¢

4) We get for a = v/3 cm,
area(S) = 20 - 3 = 60 cm?,

and

_ 10333 30999

N 4
60 20 ~ 1550 cm"”.

I,

Example 6.2 Consider for every a € Ry the set

Lo = {(z,y,2) | 2* +y* < az < a?}.
1. Find the volume of L.
2. Compute the space integral fLa (:E2 +y?+ 22) dSQ.
Let the vector field V : R? — R3 be given by

V(x,y,z) = (y2x722y,x2z) )
3. Find the flux of V through the boundary OL,.

Let F, denote that part of OL,, which is given by 2% +y?> = az and z < a, and let n denote the
outward unit normal vector field of the surface F,.

4. Find the flux

/ n-rot VdS.
Fa

Furthermore, let the vector field W : R3 — R? be given by
W(z,y,z2) = (sz,ya:Q,zyQ) ,
and put U=V +W.
5. Show that the vector field U is a gradient field and find all its integrals.
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A Volume; mass; flux; gradient field.

D Sketch L,. Then follow the guidelines. Apply Gaufl’s theorem, and possibly also Stokes’s theorem.
Finally, show that U - dx is a total differential.

I 1) The set L, is intersected at the height 2 € [0,a] in a disc of area 7(2% +y?) = 7az, so we get by
the slicing method that

vol(L,) = / arzdz = = ad.
0 2

T
TS
N ot g

Figure 20: The body L, and its projection onto the (x,y)-plane for a = 1.

2) Put B, = {(z,y) | 22 + y*> < a®}. Then we get the integral

/ (x2+y2+z2)d9:/ {/ (x2+y2+z2)d2}da:dy
La B, | J 222
/Ba
@ 1 1 1
2 3 4 6
Rl By B d
7T/0 {GQ +3a aQ 3a39}QQ

‘(1 1 1
_9 13 s_Ltps_ Lt o1ly
7T/0 {3& etae aQ 3a3Q ¢

1 1 1 1 5 5m
—9 - ST S S ) Q) VU - B e 3
77{ a” + —-a a a 7724a 12(1

1 a
(2 + %)z + 523} dx dy
=@ +y?)/a

1 1 1
{a(w2 +y?) + 3 a® — . (2 +9*)? — 35 (2 + y2)3} dx dy

Jos}

I
N

3) Now, div V = 4% + 22 + 22, so by Gauf}’s theorem and 2) the flux becomes

flux (0L,) = / div VdQ = / (22 +y* +2%)dQ = om a’.
La L, 12
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4) By Stokes’s theorem we get

/ (rot V) -ndS = V - tds,
Fa 0Fa

where (cf. the figure)

OFq = {(x,y,a) | #* +y* = a*} = {(acost,asint,a) | t € [0,27]}.
Hence along 0F,,

V(t) = (a®cost sin®t,a’sint,a’ cos®t), t € [0,2n].

When we consult the figure we see that the orientation is pointing in the wrong direction, so
in order to obtain an outward normal we must multiply by a factor —1:

27
/ (rot V) -ndS = — V. tds=— V - (—asint,acost,0)dt
Fa OF 0
2 at at 2m
= {+a4 cost-sin®t — a* sint~cost+0}dt = {Z sintt — 5 sin? ¢ =0,
0 0

which shows that there has been no need to consider if the orientation was correct.
ALTERNATIVELY it follows by a straightforward calculation that
e, e, e,

ot v=| 2 20

or 0y 02 = (—2yz, —2xz, —2zy).

y? 22y 2%z

u2+112

By using the parametric description (z,y,z) = (u, v, > of the surface we get

Or 2u or 2v
%_<1a0a?)7 %_<0717;>a

thus
e, e, e,
2u 2u v
Ni(u,v) = Lo a |7 <_;’_;71) .
2
o 1 =

Since n is the outward normal field of F,, it follows by inspection of the figure that the z-
coordinate of n must be negative. We therefore choose

1
- (2u, 2v, —a).
= (20,20, ~a)

N(u,v) = —=Nj(u,v) =
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Finally, by using a symmetric argument in the computation of the integrals,

fux(F,) = /

Ba

1
=3 /B {4uv(u2 + %) + duv(u? + v?) — 2a2m)} dudv = 0.

1
rot V-ndS = _ﬁ/ (20(u®+0%), 2u(u®+v?), 2auv) - (—2u, —2v, a) du dv
Ba

5) First compute the sum
U=V+W= (y2maz297$22) + ($Z27y$2a Zyz) = (17(92 + "52)734(1'2 + Z2)a Z(zZ + yz)) .
This implies
U-dx = z(y*+ 2%)de +y(a® + 2%)dy + z2(2* + y*)dz
1
= 5 {(y* +2%)d (2%) + (2% + 22)d (v°) + (2® + y*)d (2*) }

= d {% (®y® +2°2° + y2z2)} :

and we conclude that U is a gradient field with its integrals given by

(z%y* + y?2* + 2%2°) + C, C eR.

N =

F(x,y,2) =
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Example 6.3 Consider the vector field

ry?(1+2y) 2%y(1+ xy)
T+a2y? 7 1+ a2y?

V(z,y) = < ) : (z,y) € R2.

1) Show that V is a gradient field and find the integral F : R? — R, which is 0 at the point (0,0).

2) Write F' as a composite function:
Flz,y) = fw),  uw=g(z,y).
3) Find the maximum and the minimum of F on the set
A={(z,y) | x|+ |y| <2}
by e.g. finding the range g(A) by a geometric consideration.

A Gradient field, integral. Maximum and minimum.
D First find an integral. This is here done in three different ways.

I 1) First variant. We get by a small manipulation,

21 Zy(1
W o= Vedxo sy Qday) 27y +ay)
14 x2y? 1+ x2y?
zy(l + zy) 1+ 22y +ay—1
1+ x2y? (yde +ady) 1+ 22 +y? (=y)

— Yy — 1 X
- <1+ ) 1T (xy)g) d(zy)
- d {xy + % In (1+2%y%) — Arctan(xy)} ;

proving that V is a gradient field with the integrals
1
Fo(x,y) =zy + B In (1 + x2y2) — Arctan(zy) 4+ C, C eR.
That particular integral which is 0 at (0,0), corresponds to C' = 0, thus
1 2,2
F(z,y) =2y + 5 In (1+ 2%y”) — Arctan(zy).

Second variant. When be integrate along a broken line from (0,0), we get

v Y 22t (1 + at) u(l+w)

Wltul4u—1 w u 1
e A W AL
/0 14 u? " /0 { +1+u2 1+u2} "

1
= ay+ 3 In (1+2®y®) — Arctan(zy).
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C We shall here test the candidate,

1 2zy? 2xy>
dFF = |y+ = L Y dz
2 1+ 2292 1+22y?2 1+ a2y?
1 222y T
- - d
Jr("T+21—&—gc2y? 1+x2y2> 4
_ oyt eP) eyt oy w(1+w2y2)+x2y—wdy
1+ x2y? 1+ x2y?
2(1 2y(1
L) e (G L) WV
1+ x2y? 1+ 22y?

Third variant. We get for y arbitrary,

Floy) - /xy2(1+1:y) dx:/xy(lery) o

1+ a2y T+ (ay)2 @) =

1
= ay+ 3 In (1+ 2°y®) — Arctan(zy),
where the computations follow the same pattern as in the Second variant.
C Since dF = w = V - dx, it follows that F is an integral, and as F'(0,0) = 0, the required
integral is precisely
1
F(z,y) = zy + 5 (14 2%y?) — Arctan(zy).
2) If we put u = g(z,y) = xy, then

F(;z:,y):f(u):qu%ln(lJru?) — Arctan u.

Figure 21: The domain A and the extremal curves u = zy = +1.

3) Since F(x,y) is of class C*, and A is closed and bounded, it follows from the second main
theorem for continuous functions that I’ has both a maximum and a minimum on A.

It follows from

1
flu)=u+ 5 In (1+u®) — Arctan u
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that (cf. the integrand of the Second variant)

iy u(l+u) B
f(u)_ 1+U2’ U=y,
which is zero for either v = 0 or w = —1. Furthermore, f is increasing for u €] — oo, —1|,

decreasing for u €] — 1, 0], and increasing for u €0, +o0].
For u = xy = 0 we get

F(z,y) = F(0,y) = F(z,0) =0.

For u = 2y = —1 we get
J-l) = —142m2+ %50
-1)=— —In - .
2 4

In A these correspond to the points (—1,1) and (1, —1).

Let w = zy = +1. This corresponds to the points (1,1) and (—1,—1) in A. In this case we get
the values

F) =1+ % n2— g > f(~1).

We conclude from u € [—1,1] for (z,y) € A that the maximum is

T 1
f(171):f<_1a1):1_z+§1n27

and the minimum is
f(z,0) = f(0,y) = 0.

ALTERNATIVELY we may find the possible stationary points follows by an examination of the
boundary.

The possible stationary points satisfy V(x,y) = 0, thus

DD (y2) = 0.0)
We thus get three possibilities:

=0, y=0, or zy_l.
In the interior of A we get

{(z,0) [z €] =2,2[} and {(0,y)|ye]-22[},

because the hyperbola zy = —1 only intersects A in the boundary points (1,1) and (—1,1) in
0A.

The boundary is symmetric with respect to (0,0). As F(—x,—y) = F(z,y), it suffices to
consider the following boundary curves

r+y=2 z€[0,2, and xz—y=2, xz€]l0,2].
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a) fo+y=2ie y=—x+2, 2 €[0,2], we find the restriction

hi(z) = F(z,2—x)
= (2r—2%)+ % In (1 + (22 — 372)2) — Arctan (22 — 2°)
where
, - 1 22z —2%)- (2 —2x) 2 -2z
fa(z) = 2-20+ 2 1+ (20 —22)2 1+ (20— a?)?
= M~{l+(2x—m2)2+(2x—m2)—l}
- 2=a) z(2—x){z(2 -2
T 17 (22— 22)2 2-2){z(2—-=)+1}.

When z €]0, 2[ this is zero for x = 1, corresponding to

1
F(1,1) = F(~1,~1) = 1+ 5 n2 - Z.
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b) Ifx —y=2,ie. y=1a—2 2 €[0,2], then the restriction is given by

ho(z) = F(z,x —2) = 2% — 22 + % In (1 + (2° - 233)2) — Arctan (2* — 22)

where
, B 1 2(2% —22)- (2x —2) 2x — 2
o(x) = 2“3_2"'5' 1+ (22 —2x)2 _1+(x2—2x)2
= 2w = 1) — 2z x° —2z) —
- m{lJr(mz 2z)% + (2 — 22) — 1}
2(x—1)

= TrEoz T

In 2 €]0, 2|, this is zero for z = 1. We get for z =1,
1 U
F(1,-1)=F(-1,1)= -1+ 5 In2+ 1

Finally, we get in the stationary points,
F(0,y) = F(x,0) = 0.

By a numerical comparison of the possible extremum values it follows that the maximum is
1
F(1,1) = F(-1,-1) =1+ 5 In2 - %,

and the minimum is

F(z,0) = F(0,y) = 0.

Example 6.4 Given a C*-function U(x), x € A, where A S R3, and consider a curve such that X is
a function in time t. The curve is determined by the differential equation

x"(t) + vU(x(t) = 0,

where ! denotes differentiation with respect to t.
Prove by using the chain rule that

1
SIXIP U=

where C' is a constant. (This differential equation is called o first integral of the above because the
order is reduced by 1).

In Mechanics, x(t) can be interpreted as the path of a particle in a field of the potential U; then the
two differential equations express Newton’s second law and the energy theorem.

A Derivation of the first integral.

D When we analyze the desired result, we see that here occurs ||x’||? = ||x'[| - ||x/||, which roughly
speaking means that we must have 1 “something like x2”. Hence, the idea must be to take the
dot product between the first differential equation and x’(¢) follows by an integration over the
parameter interval I = [tg,].
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I By following the analysis above we get
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hence by a rearrangement,

% X' ()| + U(x(t)) = C  (en konstant i t).
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