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Preface

Preface

In this volume I present some examples of napla calculus, vector potentials, Green’s identities, curvilin-
ear coordinates , Electromagnetism and various other types, cf. also Calculus 2b, Functions of Several
Variables. Since my aim also has been to demonstrate some solution strategy I have as far as possible
structured the examples according to the following form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of ∧ I shall either write
“and”, or a comma, and instead of ∨ I shall write “or”. The arrows ⇒ and ⇔ are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
15th October 2007

3
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1 Nabla calculus

Example 1.1 Let V denote a vector field, which is both divergence free and rotation free, and let e
be a fixed unit vector. We consider also the following fields,

F = −e · V, W = V × e, U = −� F, T = �× W.

1) show that

�× (V × x) = V + �(V · x).

2) Show that T is the same vector field as U, and that this field also is both divergence free and
rotation free.

A Nabla calculus.

D Just exploit the assumptions,

div V = � · V = 0 and rot V = �× V = 0,

and the rules of differentiation of products.

 Nabla calculus
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I 1) We shall use the following well-known rule of calculation

�× (V × W) = (W · �)V − W(� · V) − (V · �)W + V(� · W)

with W = x, thus

�× (V × x) = (x · �)V − x(� · V) − (V · �)x + V (� · x)
= (x · �)V − 0 − (V · �)x + 3V
= V + (x · �)V − (V · �)x + 2(V · �)x
= V + (x · �)V + (V · �)x
= V + �(V · x),

where we have used that

(V · �)x =
{

V1
∂

∂x
+ V2

∂

∂y
+ V3

∂

∂z

}
(x, y, z) = (V1, V2, V3) = V,

and that

�(V · x) = (V · �)x + (x · �)V.

2) Consider in particular T and put W = x. Then

T = �× W = �× (V × e)
= (e · �)V − e(� · V) − (V · �)e + V(� · e)
= (e · �)V − 0 − 0 + 0 = (e · �)V
= (e · �)V + (V · �)e = �(e · V) = −� F = U,

and the first claim is proved.
Since T = U = −� F is a gradient field, is is rotation free,

�× T = −�×� F = 0.

Since T = U = �× W is a rotation field, is is divergence free:

� · T = � · �× W = 0.

Example 1.2 Let f be a C1-function in r (=
√

x2 + y2 + z2). We shall also (cf. the short hand
notation in connection with the chain rule) consider f as a composed function f(r(x, y, z)), where
(x, y, z) �= (0, 0, 0).

1) Express �f by the derivative f ′ and x.

2) Then set up formulæ for �× (x f) and for � · (x f).

3) Find the integer n, for which � · (rn x) = 0.

A Nabla calculus.

D Just follow the guidelines.

 Nabla calculus
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I We shall of course always assume that r �= 0. Then

�r =
(

∂r

∂x
,
∂r

∂y
,
∂r

∂z

)
=
(x

r
,
y

r
,
z

r

)
=

1
r

x.

1) We get by the chain rule,

�f =
(

f ′(r)
∂r

∂x
, f ′(r)

∂r

∂y
, f ′(t)

∂r

∂z

)
= f ′(t) � r =

f ′(r)
r

x.

2) A direct computation gives

�× (x f) =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

x f(r) y f(r) z f(r)

∣∣∣∣∣∣∣∣∣∣∣
=
(

z
f ′(r)

r
y−y

f ′(r)
r

z, x
f ′(r)

r
z−z

f ′(r)
r

x, y
f ′(r)

r
x−x

f ′(r)
r

y

)
= (0, 0, 0).

A variant is

�× (x f) =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

x f(r) y f(r) z f(r)

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂f(r)
∂x

∂f(r)
∂y

∂f(r)
∂z

x y z

∣∣∣∣∣∣∣∣∣∣∣∣
= �f × x =

f ′(r)
r

x × x = 0.

Furthermore,

� · (x f) =
(

f(r) + x
∂f

∂x

)
+
(

f(r) + y
∂f

∂y

)
+
(

f(r) + z
∂f

∂z

)

= 3 f(r) + x · �f = 3f(r) +
f ′(r)

r
x · x

= 3f(r) + r f ′(r).

3) Choose f(r) = rn. Then it follows from the above,

� · (rn x) = 3rn + n rn−1 = (3 + n)rn.

When r �= 0, this is equal to 0 for n = −3. Remark. In general, �· (x f(r)) = 0 generates the
differential equation

r f ′(r) + 3f(r) = 0.

Then by separation of the variables,

f ′(r)
f(r)

[
=

ln |f(r)|
dr

]
= −3

r
,

and the complete solution is obtained by an integration,

f(r) = C · r−3, r �= 0, where C ∈ R. ♦

 Nabla calculus
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Example 1.3 Let a be a constant vector, and let f be a C1-function in one variable. We define

g(x) = f(a · x).

1) Express the gradient �g by the derivative f ′.

(Use one of the special cases of the chain rule).

2) Let also V be a gradient field, and let k = 3. Show that the vector �× (gV) is perpendicular to
both a and V.

A Nabla calculus.

D Just compute.

I 1) If a = (a1, . . . , ak) and x = (x1, . . . , xk), then

g(x) = f(a · x) = f

⎛
⎝ k∑

j=1

aj xj

⎞
⎠ ,

thus

∂g

∂xj
= f ′(a · x) aj ,

hence

�g = f ′(a · x)a.

2) If V is a gradient field, then there exists a function F , such that V = �F . Hence,

�× (g V) = (�g) × V + g �×V

= f ′(a · x)a × V + f(a · x) �×(�F )
= f ′(a · x)a × V + 0

= f ′(a · V,

which shows that �× (g V) is perpendicular on both a and V.

Example 1.4 Show the formula

2(�f) · (�× (f V)) = (�×V) · �(f 2).

A Nabla calculus.

D Just compute.

 Nabla calculus
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I We get straight away,

2(�f) · (�× (f V))

= 2
(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
·
(

∂

∂y
(fVz) − ∂

∂z
(fVy),

∂

∂z
(fVx) − ∂

∂x
(fVz),

∂

∂x
(fVy) − ∂

∂y
(fVx)

)

= 2
∂f

∂x

{
∂f

∂y
Vz + f

∂Vz

∂y
− ∂f

∂z
Vy − f

∂Vy

∂z

}

+2
∂f

∂y

{
∂f

∂z
Vx + f

∂Vx

∂z
− ∂f

∂x
Vz − f

∂Vz

∂x

}

+2
∂f

∂z

{
∂f

∂x
Vy + f

∂Vy

∂x
− ∂f

∂y
Vx − f

∂Vx

∂y

}

=
∂(f2)
∂x

{
∂Vz

∂y
− ∂Vy

∂z

}
+

∂(f2)
∂y

{
∂Vx

∂z
− ∂Vz

∂x

}
+

∂(f2)
∂z

{
∂Vy

∂x
− ∂Vx

∂y

}

= �(f2) · (�× V).

 Nabla calculus
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Example 1.5 Let V be a C1 vector field in the set A � R
3. Show that if there exists a C1 function

g : A → R \ {0}, such that g V is a gradient field in A, then

V · (�× V) = 0

in the set A.

A Nabla calculus.

D Start by analyzing the assumption. Compute �× V by means of the rules of calculations.

I The assumption assures that there exists a C2 function F , such that

g V = �F, i.e. V =
1
g

� F = h � F,

where h : A → R \ {0} is C1, because g(x) �= 0. Then

�× V = �× (h � F )

= (�h) ×�F + h �×� F

= (�h) ×�F, [the rotation of a gradient is 0].

Now, �F is perpendicular to (�h) × (�F ), hence

V · (�× V) = h � F · {(�h) ×�F} = 0.

Example 1.6 Let α be a constant. Find �(rα) and �2(rα).

A Nabla calculus.

D Just compute.

I When r �= 0, then

�r =
1
r

(x, y, z),

hence by the chain rule,

�(rα) = α rα−1 � r = α rα−2 (x, y, z) = α rα−2 x.

By taking the divergence we get

�2(rα) = � · �(rα) = � · {α rα−2 (x, y, z)
}

= α(α − 2) rα−4 (x, y, z) · (x, y, z) + 3α rα−2

= α(α − 2) rα−4 · r2 + 3α rα−2

= α(α + 1) rα−2.

 Nabla calculus
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Example 1.7 Let e be a constant unit vector. Show that

e · {�(V · e) −�× (V × e)} = � · V.

A Nabla calculus.

D Just compute.

I We get by means of the rules of calculation,

e · {�(V · e) −�× (V × e)}
= e · {[(e · �)V+e × (�× V)+(V · �)e+V × (�× e)]−�× (V × e)}
= e · {(e · �)V + [e × (�× V)] −�× (V × e)}
= e · {(e · �)V −�× (V × e)} + e · [e × (�× V)]
= e · {(e · �)V−[(e · �)V−e(� · V)−(V · �)e+V(� · e)]}+0
= e · e(� · V) + 0
= � · V.

This formula can of course also be written in the form

e · {grad(div e) − rot(V × e)} = div V.

Example 1.8 Let α be a constant vector. For x �= 0 we consider the fields

U(x) =
a · x
‖x‖3

, W(x) =
a × x
‖x‖3

.

Show that

�× W = −� U.

A Nabla calculus.

D Just compute by using the rulse of calculation and the result of Example 1.6.

I Clearly, U and W are C∞ for x �= 0. Put r = ‖x‖. Then by Example 1.6,

�(rα) = α rα−2 x for x �= 0.

Then we shall use the following result from Linear Algebra,

x × (a × x) = (x · x)a − (a · x)x = r2 a − (a · x)x.

 Nabla calculus
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Applying these preparations we get

�× W = �× {
r−3(a × x)

}
definition of W

= (�r−3) × (a × x + r−3 �×(a × x) rule of calculation

= −3r−5x × (a × x) + r−3 �×(a × x) Example 1.6

= −3r−5{r2a − (a · x)x} + r−3 �×(a × x) Linear Algebra

= − 3
r3

a+
3a · x

r5
x+

1
r3

{0−0−(a · �)x+a(� · x)} rule of computation

= − 3
r3

a +
3
r5

(a · x)x +
1
r3

(−a + 3a) computation

= − 1
r3

a +
3
r5

(a · x)x, reduction,

and

�U = � (
r−3(a · x)

)
definition of U

= (a · x) � (
r−3

)
+

1
r3

� (a · x) rule of calculation

= (a · x) ·
{
− 3

r5
x
}

+
1
r3

a Example 1.6 and � (a · x) = a.

It follows by a comparison of these two expressions that

�× W = −� U.

This can also be written

rot W = −grad U,

where U and W are given above.

Example 1.9 Consider the composite vector function

V(x) = U(w), w = f(x).

Find an expression for � · V and �× V.

A Nabla calculus.

D Just compute.

I In general,

∂Vj

∂xi
=

∂(Uj ◦ f)
∂xi

=
dUj

dw
· ∂f

∂xi
, w = f(x).

 Nabla calculus
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When we change notation (x1, x2, x3) = (x, y, z), it follows that

� · V =
3∑

i=1

U ′
i(w)

∂f

∂xi
= �f · U′(f(x)),

and

�× V =
(

∂Vz

∂y
− ∂Vy

∂z
,

∂Vx

∂z
− ∂Vz

∂x
,

∂Vy

∂x
− ∂Vx

∂y

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U ′
z(w)

∂f

∂y
− U ′

y(w)
∂f

∂z

U ′
x(w)

∂f

∂z
− U ′

z(w)
∂f

∂x

U ′
y(w)

∂f

∂x
− U ′

x(w)
∂f

∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂f

∂x

∂f

∂y

∂f

∂z

U ′
x U ′

y U ′
z

∣∣∣∣∣∣∣∣∣∣∣
= �f × U′(f(x)).

 Nabla calculus
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Alternatively, a more sophisticated reasoning is the following,

�× V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

Ux ◦ f Uy ◦ f Uz ◦ f

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂f

∂x

∂f

∂y

∂f

∂z

U ′
x ◦ f U ′

y ◦ f U ′z ◦ f

∣∣∣∣∣∣∣∣∣∣∣
= �f × U′(f(x)).

Summarizing we obtain the results

� · (U ◦ f(x)) = �f(x) · U − (f(x)) and �×(U ◦ f(x)) = �f(x) × U′(f(x)).

Example 1.10 Given a C1 vector field V and a C2 scalar field f with the following property:
The vector V is at each point (x, y, z) perpendicular to the level surface of f through the point (x, y, z).
Prove that V · (�× V) = 0.

A Nabla calculus.

D Analyze the assumption. Then find a relation between f and V. Finally, compute V · (�× V).

I Since both �f and V are perpendicular to the level surface, they are proportional at each point.
Hence, there exists a function g, such that (usually)

(1) V(x, y, z) = g(x, y, z) � f(x, y, z).

When �f �= 0, then clearly g is os class C1. Thus, when �f �= 0, then

�× V = �× (g � f) = (�g) × (�f) + g (�×�f) = (�g) × (�f) + 0.

Since �f is perpendicular to �g ×�f , we get

V · (�× V) = g � f · {�g ×�f} = 0.

If �f = 0, then (1) does not necessary hold. However, if (1) holds, the relation is trivial.

Now assume that (1) does not hold, i.e. V(x, y, z) �= 0 and �f(x, y, z) = 0. We shall then use a
continuity argument:

Since f has level surfaces, we must have �f �= 0 arbitrarily close to (x, y, z), and it follows from
the above that V · (� × V) = 0 at these points. This relation is continuous, so it follows by a
continuous extension that V · {� × V} = 0 also is valid at points, where �f(x, y, z) = 0.

Example 1.11 Show by means of Gauß’s theorem that for any closed surface F ,∫
F

n dS = 0.

A Gauß’s theorem in its operator version.

D Insert the obvious into Gauß’s theorem in its operator version.

 Nabla calculus
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I Let F be the boundary of the domain Ω. Then by Gauß’s theorem in its operator version,∫
Ω

�� dΩ =
∫

∂Ω

n� dS =
∫
F

n� dS.

If we replace � we 1, it follows that∫
F

n dS =
∫

Ω

�1 dΩ =
∫

Ω

0 dΩ = 0.

Example 1.12 Find the divergence of the vector field

V = (�f) × (�g).

[Cf. Example 2.3.]

A Nabla calculus.

D Just compute.

I The rotation of a gradient is 0, i.e. every gradient field is rotation free. Hence

� · (�f ×�g) = (�×�f) · �g − (�×�g) · �f = 0 − 0 = 0.

Example 1.13 Consider the vector field V : R
3 → R

3 given by

V(x, y, z) = f(x, y) ez,

which also satisfies

�× (�× V) = αV,

where α is a constant. Find a differential equation which has the function f as one of its solutions.

A Double rotation.

D Compute the left hand side.

I It follows from V(x, y, z) = f(x, y) ez that

�× V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

0 0 f(x, y)

∣∣∣∣∣∣∣∣∣∣∣
=
(
f ′

y,−f ′
x, 0

)

and

�× (�× V) =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

f ′
y −f ′

x 0

∣∣∣∣∣∣∣∣∣∣∣
=
(
0 , 0 ,−f

′′
xx − f

′′
yy

)
= (0, 0,�2f),

 Nabla calculus
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and

αV = (0, 0, α f(x, y)).

Then from �× (�× V) = αV,

−�2 f = α f or �2 f + α f = Δf + α f = 0.

Example 1.14 Let V denote the volume of a domain Ω in space with the outwards unit normal vector
field n, and let a be a constant vector. Find

1
V

∫
∂Ω

n × (x × a) dS.

A Nabla calculus.

D Apply a variant Gauß’s theorem and use the nabla calculations.

I By a variant of Gauß’s theorem,∫
∂Ω

n × V dS =
∫

Ω

�× V dΩ.

Put V = x × a. Then

1
V

∫
∂Ω

n × (x × a) dS =
1
V

∫
Ω

�× (x × a) dS.

Then by a rule of calculation,

�× (x ×�a) = (a · �)x − a(� · x) − (x · �)a + x(� · a)

= (a · �)x − a(� · x) − 0 + 0

=
(

a1
∂

∂x
+ a2

∂

∂y
+ a3

∂

∂z

)
(x, y, z) − a · (1 + 1 + 1)

= a − 3a = −2a,

which is a constant. Thus by insertion,

1
V

∫
∂Ω

n × (x × a) dS =
1
V

∫
V

(−2a dS = −2a.

Addition. For completeness we here prove the variant of Gauß’s theorem, which is applied above.
First note that the usual version of Gauß’s theorem can be written∫

∂Ω

n · W dS =
∫

Ω

� · W dΩ.
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Choose W = V × b, where b is any constant vector. Then

(2)
∫

∂Ω

n · (V × b) dS =
∫

Ω

� · (V × b) dΩ.

The geometric interpretation of n · (V × b) is that it is equal to the (signed) volume of the
parallelepiped defined by the vectors n, V and b. (This simple result is also known from Linear
Algebra).

The same interpretation is true for (n × V) · b (with the same sign, because the sequence of the
vectors is not changed), thus

n · (V × b) = (n × V) · b.

Since b is constant, it follows by a rule of calculation,

� · (V × b) = (�× V) · b − (�× b · V) = (�× V) · b.

By inserting these two results into (2), we get∫
∂Ω

(n × V) · b dS =
∫

Ω

(�× V) · b dΩ.

 Nabla calculus
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Since b is a constant vector, it follows by a rearrangement,{∫
∂Ω

n × V dS −
∫

Ω

�× V dΩ
}
· b = 0.

Now, 0 is the only vector, which is perpendicular to all vectors, thus the first factor must be 0,
and we get by another rearrangement.∫

∂Ω

n × V dS =
∫

Ω

�× V dΩ,

and the variant of Gauß’s theorem has been proved.

Example 1.15 Let V, W be vector fields in the space which also depend on time t and satisfy the
equations

�× V = α
∂W
∂t

, �× W = −β
∂V
∂t

,

where α and β are constants. Show that the vector field

U = βV × ∂V
∂t

+ αW × ∂W
∂t

and the scalar field

f = βV · � ×V + αW · � ×W

satisfy the differential equation

� · U +
∂f

∂t
= 0.

(An equation of this type is often called a continuity equation or a preservation theorem).

A Continuity equation.

D Nabla calculus.

I Since
∂

∂t
is a differentiation with respect to a “parameter”, where can interchange

∂

∂t
with any of

the operators �, �· and �×. Thus

∂f

∂t
= β

∂V
∂t

· (�× V) + βV ·
(
�× ∂V

∂t

)
+ α

∂W
∂t

· (�× W) + αW ·
(
�× ∂W

∂t

)

= −(�× W) · (�× V) + βV ·
(
�× ∂V

∂t

)
+ (�× V) · (�× W) + αW ·

(
�× ∂W

∂t

)

= βV ·
(
�× ∂V

∂t

)
+ αW ·

(
�× ∂W

∂t

)
.
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By using this rule of calculation we get similarly,

� · U = β � ·
(
V × ∂V

∂t

)
+ α � ·

(
W × ∂W

∂t

)

= β(�× V) · ∂V
∂t

− β

(
�× ∂V

∂t

)
· V + α(�× W) · ∂W

∂t
− α

(
�× ∂W

∂t

)
· W

= −(�× V) · (�× W) − βV ·
(
�× ∂V

∂t

)
+ (�× V) · (�× W) − αW ·

(
�× ∂W

∂t

)

= −βV ·
(
�× ∂V

∂t

)
− αW ·

(
�× ∂W

∂t

)

Finally, by adding these expressions we get

� · U +
∂f

∂t
= 0.

 Nabla calculus
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2 Vector potentials

Example 2.1 Prove in each of the following cases that the given vector field V : R
3 → R

3 is diver-
gence free. The find a vector potential W : R

3 → R
3, such that V = �×W. (We may not necessarily

consider the points where xyz = 0).

1) V(x, y, z) =
(
cosh(z2), cosh(x2), cosh(y2)

)
.

2) V(x, y, z) = (x2y + z, xy2 + z,−4xyz).

3) V(x, y, z) = (xz, yz,−z2).

4) V(x, y, z) =
(

1
1 + y2

,
1

1 + z2
,

1
1 + x2

)
.

5) V(x, y, z) =
(

sin z

z
,

sinx

x
,

sin y

y

)
.

6) V(x, y, z) = (expx, y exp x,−2z expx).

A Vector potential.

D Clearly, the domain R
3 is star shaped. First prove that the field is divergence free. Then compute

U(x) =
∫ 1

0

tV(tx) dt

and

W(x) = U(x) × x = −x ×
∫ 1

0

tV(tx) dt =
∫ 1

0

V(tx) × (tx) dt.

Finally, check the result, i.e. show that

�× W = V.

I 1. Since each Vi does not depend on xi, we clearly have that � · V = 0.

Because of the symmetry it suffices to compute∫ 1

0

t cosh
(
(tu)2

)
dt =

∫ 1

0

t cosh
(
t2u2

)
dt =

1
2

∫ 1

0

cosh
(
τ u2

)
dτ =

1
2

sinh(u2)
u2

,

where
sinhα

α
in general in the following is interpreted as 1, when α = 0. Then continue either by

a direct calculation or by a continuous extension, i.e. by going to the limit.

It follows from the above that

U(x) =
∫ 1

0

tV(tx) dt =
1
2

(
sinh(z2)

z2
,

sinh(x2)
x2

,
sinh(y12)

y2

)
,
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hence

W = U × x =
1
2

∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

sinh(z2)
z2

sinh(x2)
x2

sinh(y2)
y2

x y z

∣∣∣∣∣∣∣∣∣∣∣∣
=

1
2

(
z · sinh(x2)

x2
− sinh(y2)

y
, x · sinh(y2)

y2
− sinh(z2)

z
, y · sinh(z2)

z2
− sinh(x2)

x

)
.

C Test. We have

�× W =
1
2

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

W1(x, y, z) W2(x, y, z) W3(x, y, z)

∣∣∣∣∣∣∣∣∣∣∣

=
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sinh(z2)
z2

+ 2 sinh(z2) − sinh(z2)
z2

sinh(x2)
x2

+ 2 sinh(x2) − sinh(x2)
x2

sinh(y2)
y2

+ 2 sinh(y2) − sinh(y2)
y2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
sinh(z2) , sinh(x2) , sinh(y2)

)
= V.

The result is correct.

I 2. First compute

div V = � · V = 2xy + 2xy − 4xy = 0,

thus the field is divergence free. Then

U(x) =
∫ 1

0

tV(tx) dt =
(∫ 1

0

t{t3x2y+tz2}dt,

∫ 1

0

t{t3xy2+tz}dt,−4xyz

∫ 1

0

t · t3dt

)

=
(

1
5

x2y +
1
3

z ,
1
5

xy2 +
1
3

z , −4
5

xyz

)
,
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and hence

W = U × x =

∣∣∣∣∣∣
ex ey ez

1
5 x2y + 1

3 z 1
5 xy2 + 1

3 z − 4
5 xyz

x y z

∣∣∣∣∣∣
=

(
1
5

xy2z +
1
3

z2 +
4
5

xy2z , −4
5

x2yz − 1
5

x2yz − 1
3

z2,

1
5

x2y2 +
1
3

yz − 1
5

x2y2 +
1
3

yz − 1
5

x2y2 − 1
3

xz

)

=
(

xy2z +
1
3

z2 , −x2yz − 1
3

z2 ,
1
3

yz − 1
3

xz

)

= z

(
xy2 +

1
3

z , −x2y − 1
3

z ,
1
3

y − 1
3

x

)
.

C Test. Here

�× W =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

xy2z+ 1
3 z2 −x2yz− 1

3 z2 1
3 yz− 1

3 xz

∣∣∣∣∣∣∣∣∣∣∣
=

(
1
3

z+x2y+
2
3

z, xy2+
2
3

z+
1
3

z,−2xyz−2xyz

)

= (x2y + z, xy2 + z,−4xyz) = V.

Our result has proved to be correct.

I 3. Since

div V = � · V = z + z − 2z = 0,

the field is divergence free.
Furthermore,

U(x) =
∫ 1

0

tV(tx) dt =
(∫ 1

0

t · t2xz dt,

∫ 1

0

t · t2yz dt,−
∫ 1

0

t · t2z2 dt

)

=
1
4

(xz, yz,−z2) =
1
4

V(x, y, z),

thus

W = U × x =
1
4

∣∣∣∣∣∣∣∣∣∣

ex ey ez

xz yz −z2

x y z

∣∣∣∣∣∣∣∣∣∣
=

z

4

∣∣∣∣∣∣∣∣∣∣

ex ey ez

x y −z

x y z

∣∣∣∣∣∣∣∣∣∣
=

z

4

∣∣∣∣∣∣∣∣∣∣

ex ey ez

x y −z

0 0 2z

∣∣∣∣∣∣∣∣∣∣
=

z2

2

∣∣∣∣∣∣
ex ey

x y

∣∣∣∣∣∣ =
1
2

(yz2,−xz2, 0).
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C Test. We get

�× W =
1
2

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

yz2 −xz2 0

∣∣∣∣∣∣∣∣∣∣∣
=

1
2

(2xz, 2yz,−z2 − z2) = (xz, yz,−z2) = V.

We have thus tested our result.

I 4. Clearly, since each Vi is independent of xi, we must have � · V = 0.

Because of the symmetry it suffices to compute∫ 1

0

t · 1
1 + (tu)2

dt =
1
2

∫ 1

0

1
1 + τ u2

dτ =
1
2

ln(1 + u2)
u2

,

where the result by continuous extension is interpreted as
1
2

for u = 0. Hence

U(x) =
∫ 1

0

tV(tx) dt =
1
2

(
ln(1 + y2)

y2
,

ln(1 + z2)
z2

,
ln(1 + x2)

x2

)
,

 Vector potentials
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and thus

W = U × x =
1
2

∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

ln(1 + y2)
y2

ln(1 + z2)
z2

ln(1 + x2

)
x2

x y z

∣∣∣∣∣∣∣∣∣∣∣∣
=

1
2

(
ln(1 + z2)

z
− y

ln(1 + x2)
x2

,
ln(1 + x2)

x
− z

ln(1 + y2)
y2

,
ln(1 + y2)

y
− x

ln(1 + z2)
z2

)
.

C Test. Here

�× W =
1
2

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

W1(x, y, z) W2(x, y, z) W3(x, y, z)

∣∣∣∣∣∣∣∣∣∣∣

=
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
1 + y2

− ln(1 + y2)
y2

+
ln(1 + y2)

y2

2
1 + z2

− ln(1 + z2)
z2

+
ln(1 + z2)

z2

2
1 + x2

− ln(1 + x2)
x2

+
ln(1 + x2)

x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

1
1 + y2

1
1 + z2

,
1

1 + x2

)
= V(x, y, z).

We have tested our result.

I 5. Interpret
sin u

u
as 1, when u = 0. Then Vi is independent of xi (same index i in both places),

and the field is clearly divergence free. Due to the symmetry it suffices to compute∫ 1

0

t · sin(tu)
tu

dt =
1
u

∫ 1

0

sin(tu) du =
1 − cos u

u2
for u �= 0,

and∫ 1

0

t dt =
1
2

for u = 0,

where we interpret
1 − cos u

u2
as

1
2
, when u = 0. This is in agreement with the continuous extension.

Thus

U(x) =
∫ 1

0

tV(tx) dt =
(

1 − cos z

z2
,

1 − cos x

x2
,

1 − cos y

y2

)
,
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and hence

W = U × x =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

1 − cos z

z2

1 − cos x

x2

1 − cos y

y2

x y z

∣∣∣∣∣∣∣∣∣∣∣
=

(
z · 1 − cos x

x2
− 1 − cos y

y
, x · 1 − cos y

y2
− 1 − cos z

z
, y · 1 − cos z

z2
− 1 − cos x

x

)
.

C Test. It follows that

�× W =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

W1(x, y, z) W2(x, y, z) W3(x, y, z)

∣∣∣∣∣∣∣∣∣∣∣

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − cos z

z2
+

sin z

z
− 1 − cos z

z2

1 − cos x

x2
+

sinx

x
− 1 − cos x

x2

1 − cos y

y2
+

sin y

y
− 1 − cos y

y2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

sin z

z
,

sinx

x
,

sin y

y

)
= V,

and we have checked our result.

I 6. Since

div V = � · V = expx + expx − 2 exp x = 0,

the field is divergence free.

Then

U(x, y, z) =
∫ 1

0

t (exp(tx), ty exp(tx),−2tz exp(tx)) dt

=
(∫ 1

0

t exp(tx) dt , y

∫ 1

0

t2 exp(tx) dt , −2z
∫ 1

0

t2 exp(tx) dt

)

=
(

1
x2

∫ x

0

τ · exp(τ) dτ ,
y

x3

∫ x

0

τ2 exp(τ) dτ , −2z
x3

∫ x

0

τ2 exp(τ) dτ

)
.

A small computation gives∫ x

0

τ exp(τ) dτ = (x − 1)ex + 1
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and∫ x

0

τ2 exp(τ) dτ = (x2 − 2x + 2)ex − 2,

hence by insertion,

U(x, y, z) =
(

(x − 1)ex + 1
x2

, y · (x2 − 2x + 2)ex − 2
x3

, −2z · (x2 − 2x + 2)ex − 2
x3

)
.

Then

W(x) = U(x) × x

=

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

(x−1)ex+1
x2

y · (x2−2x+2)ex−2
x3

−2z · (x2−2x+2)ex−2
x3

x y z

∣∣∣∣∣∣∣∣∣∣∣

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yz · (x2 − 2x + 2)ex − 2
x3

+ 2yz · (x2 − 2x + 2)ex − 2
x3

−2z · (x2 − 2x + 2)ex − 2
x2

+ z · (x − 1)ex + 1
x2

y · (x − 1)ex + 1
x2

− y · (x2 − 2x + 2)ex − 2
x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3yz · (x2 − 2x + 2)ex − 2
x3

−z · (2x2 − 5x + 5)ex − 5
x2

−y · (x2 − 3x + 3)ex − 3
x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

C “Test”. Even if the original expression of V(x, y, z) looks very simple, an insertion into the
solution formula will give very difficult expressions with e.g. x2 and x3 in the denominator. We
shall therefore not in this case test the result, i.e. compute

�× W =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

W1(x, y, z) W2(x, y, z) W3(x, y, z)

∣∣∣∣∣∣∣∣∣∣∣
.
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Example 2.2 Consider a vector field V : A → R
2, where A is an open star shaped subset of the

(X,Y )-plane. Furthermore, assume that the field V is divergence free.

1) Prove that the vector field ez × V is rotation free and that there exists a scalar field W : A → R,
such that W ez is a vector potential of V.

2) Prove that a level curve of W is a field line of V.

A Vector potential.

D Analyze the text step by step and prove the claims in succession.

I 1) According to the assumption, V : A → R
2 is a function of the variable (x, y), which satisfies

div V =
∂V1

∂x
+

∂V2

∂y
= 0.

Define a vector field Ṽ by

Ṽ(x, y, z) = (V1(x, y), V2(x, y), 0) , (x, y, z) ∈ A × R = Ã.

Then Ã is star shaped and Ṽ is also divergence free.

 Vector potentials
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We shall in the following only write V instead of the more precise Ṽ.

By one of the formulæ of differentiation of a product,

�× (ez × V) = (V · �)ez−V(� · ez)−(ez · �)V+ez(� · V)

= 0 + 0 − ∂

∂z
V + div V · ez = 0,

and the vector field ez × V is rotation free.

Thus there exists a scalar field W̃ : A × R → R, such that

�W̃ =

(
∂W̃

∂x
,

∂W̃

∂y
,

∂W̃

∂z

)
= ez × V = (−V2, V1, 0) .

Since V is independent of z, also W̃ = W must be independent of z, thus we can choose a
scalar field W : A → R

2, such that

�W = (−V2, V1, 0) = ez × V.

Further,

�× (Eez) = (�W ) × ez + W �×ez = (ez × V) × ez =

∣∣∣∣∣∣∣∣∣∣

ex ey ez

−V2 V1 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
ex ey

−V2 V1

∣∣∣∣∣∣ = (V1, V2, 0) = V.

(Alternatively we may twice apply the geometric interpretation of the cross product). This
shows that W ez is a vector potential for V, and we have proved all the claims.

2) A level curve of W is given by

W (x, y) = c,

where the tangent field U(x, y) of the level curve satisfies

�W · U = (ez × V) · U = 0.

Clearly, this equation has the solution U = V, thus the level curve is also a field line of V.
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Example 2.3 Let α be a constant, and let two vector fields on R
3 be given in the following way:

U = (�f) × (�g), W = α (f � g − f � f).

Show that one can choose α such that W is a vector potential for U.
[Cf. Example 1.12.]

A Vector potential.

D Compute �× W and compare with U = �f ×�g.

I By the rules of calculations,

�× W = α �×(f � g) − α �×(g � f)

= α � f ×�g+αf (�×�g)−α � g ×�f−αg (�×�f)

= α �×� g + 0 + α � f ×�g + 0

= 2α � f ×�g = 2αU.

We see that if α =
1
2
, then W is a vector potential for U.

Example 2.4 Let V : R
3 → R

3 be a given vector field. Find in each of the following cases the
following vector fields:

S(x) =
∫ 1

0

τ V(x τ) dτ, U(x) = −x × S(x), W(x) = �× U(x).

1) V(x, y, z) = (x, y, z).

2) V(x, y, z) =
(
x2, y2, z2

)
.

3) V(x, y, z) =
(
4x2, 0, 0

)
.

4) V(x, y, z) = (0, cos y, 0).

A The standard formula of computation of a vector potential applied on non-divergence free vector
fields. The example shall illustrate what can go wrong when the assumptions are not fulfilled.

D First note that the given fields are not divergence free. Then just compute.

I 1) First note that div V = 3 �= 0, thus the vector potential does not exist.
We shall nevertheless compute the candidate of the “vector potential” according to the standard
procedure. First,

S(x) =
∫ 1

0

τ V(x τ) dτ =
∫ 1

0

τ (xτ, yτ, zτ) dτ = (x, y, z)
∫ 1

0

τ2 dτ =
1
3

(x, y, z).
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Then

U(x) = −x × S(x) = S(x) × x =
1
3

x × x = 0,

and thus

W(x) = �× V(x) = 0 �= V(x).

2) Here

div V = 2(x + y + z) �= 0,

so the field is not divergence free.
By a direct computation,

S(x) =
∫ 1

0

τ V(x τ) dτ =
∫ 1

0

τ
(
x2τ2, y2τ2, z2τ2

)
dτ

=
(
x2, y2, z2

) ∫ 1

0

τ3 dτ =
1
4
(
x2, y2, z2

)
=

1
4

V.

Then

U(x) = −x × S(x) = S(x) × x =
1
4

∣∣∣∣∣∣∣∣∣∣

ex ey ez

x2 y2 z2

x y z

∣∣∣∣∣∣∣∣∣∣
=

1
4
(
y2z − z2y, z2x − x2z, x2y − y2x

)
,

hence,

W(x) = �× U(x) =
1
4

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

y2z−z2y z2x−x2z x2y−y2x

∣∣∣∣∣∣∣∣∣∣∣

=
1
4

⎛
⎜⎜⎜⎜⎝

x2 − 2yz − 2xz + x2

y2 − 2yz − 2yz + y2

z2 − 2xz − 2yz + z2

⎞
⎟⎟⎟⎟⎠ =

1
2
(
x2 − x(y + z), y2 − y(x + z), z2 − z(x + y)

)
,

which clearly is different from V(x).

3) Here div V = 8x �= 0, and the field is not divergence free.
By a direct computation,

S(x) =
∫ 1

0

τ V(x τ) dτ =
∫ 1

0

τ(4x2τ2, 0, 0) dτ = (x2, 0, 0).
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Then

U(x) = −x × S(x) = S(x) × x =

∣∣∣∣∣∣∣∣∣∣

ex ey ez

x2 0 0

x y z

∣∣∣∣∣∣∣∣∣∣
=
(
0,−x2z, x2y

)
,

hence

W(x) = �× U(x) =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

0 −x2z x2y

∣∣∣∣∣∣∣∣∣∣∣
= (x2 + x2,−2xy,−2xz) = 2x (x,−y,−z),

which clearly is not equal to V(x).
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4) It follows immediately that div V = − sin y �= 0, so the field is not divergence free.
Then by direct computation,

S(x) =
∫ 1

0

τ V(x τ) dτ =
∫ 1

0

τ (0, cos(y τ), 0) dτ.

If y = 0, then

S(x, 0, z) =
∫ 1

0

τ (0, 1, 0) dτ =
1
2

(0, 1, 0).

If y �= 0, then∫ 1

0

τ cos(yτ) dτ =
sin y

y
+

1
y2

(cos y − 1),

hence

S(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

(0, 1, 0), for y = 0,

y sin y + cos y − 1
y2

(0, 1, 0), for y �= 0.

Since the case y = 0 is obtained by taking the limit of the case y �= 0, it suffices in the following
only to consider y �= 0. It follows from

−x × (0, 1, 0) = (0, 1, 0) × x =

∣∣∣∣∣∣∣∣∣∣

ex ey ez

0 1 0

−x y z

∣∣∣∣∣∣∣∣∣∣
= (z, 0,−x),

that

U(x) = −x × S(x) =
y sin y + cos y − 1

y2
(z, 0,−x)

=
(

sin y

y
− 1 − cos y

y2

)
(z, 0,−x)(z ϕ(y =, 0,−xϕ(y)),

where we have put

ϕ(y) =
sin y

y
− 1 − cos y

y2
.

First calculate for y �= 0,

ϕ′(y) =
cos y

y
− sin y

y2
− sin y

y2
+ 2 · 1 − cos y

y3
=

cos y

y
− 2 · sin y

y2
+ 2 · 1 − cos y

y3

=
y2 cos y − 2y sin y + 2 − 2 cos y

y3
,

where

ϕ′(0) = lim
y→0

ϕ′(0) = 0.
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Then

W(x) = �× U(x =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

z ϕ(y) 0 −xϕ(y)

∣∣∣∣∣∣∣∣∣∣∣
= (−xϕ′(y), ϕ(y) + ϕ(y),−z ϕ′(y))

= (−xϕ′(y), 2ϕ(y),−z ϕ′(y)),

which is different from V(x, y, z).

Example 2.5 Let V : R
3 → R

3 be a divergence free vector field. Show that the vector field

W(x, y, z) =

⎛
⎜⎜⎜⎜⎝

− ∫ y

β
Vz(x, η, γ) dη +

∫ z

γ
Vy(x, y, ζ) dζ

− ∫ z

γ
Vx(x, y, ζ) dζ

0

⎞
⎟⎟⎟⎟⎠ ,

where β and γ are constants, is a vector potential for V.

A Vector potential.

D Just test the given solution, i.e. show that �× W = V.

I Put W = (W1,W2,W3). Then

�× W =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

W1 W2 W3

∣∣∣∣∣∣∣∣∣∣∣
=
(

∂W3

∂y
− ∂W2

∂z
,

∂W1

∂z
− ∂W3

∂x
,

∂W2

∂x
− ∂W1

∂y

)
.

Now,

W1(x, y, z) = −
∫ y

β

Vx(x, η, γ) dη +
∫ z

γ

Vy(x, y, ζ) dζ,

W2(x, y, z) = −
∫ z

γ

Vx(x, y, ζ) dζ,

and W3(x, y, z) = 0, hence the first coordinate is

∂W3

∂y
− ∂W2

∂z
= 0 +

∂

∂z

∫ z

γ

Vx(x, y, ζ) dζ = Vx(x, y, z),

and the second coordinate is

∂W1

∂z
− ∂W3

∂x
= − ∂

∂z

∫ y

β

Vz(x, η, γ) dη +
∂

∂z

∫ z

γ

Vy(x, y, ζ) dζ − 0

= 0 + Vy(x, y, z) = Vy(x, y, z).
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Finally, we get for the third coordinate,

∂W2

∂x
− ∂W1

∂y
= −

∫ z

γ

∂Vx

∂x
(x, y, ζ) dζ + Vz(x, y, γ) −

∫ z

γ

∂Vy

∂y
(x, y, ζ) dζ

= Vz(x, y, γ) −
∫ z

γ

{
∂Vx

∂x
(x, y, ζ) +

∂Vy

∂y
(x, y, ζ)

}
dζ.

From the assumption

div V =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
= 0,

follows by a rearrangement that the integrand is given by

−∂Vx

∂x
− ∂Vy

∂y
=

∂Vz

∂z
.

Thus by insertion,

∂W2

∂x
− ∂W1

∂y
= Vz(x, y, z) +

∫ z

γ

∂Vz

∂z
(x, y, ζ) dζ = Vz(x, y, γ) + [Vz(x, y, ζ)]zζ=γ = Vz(x, y, z).

Summarizing,

�× W = V,

and we have proved that W is a vector potential for V.

Remark. The formula of this example of a vector potential in R
3 is far easier to apply than the

usual procedure of solution given in most textbooks. ♦

Example 2.6 Given the vector field

V(x, y, z) =
(
2x + x2y, y − xy2, 7z + 5z3

)
, (x, y, z) ∈ R

3.

1. Compute the divergence � · V and the rotation �× V.

2. Check if there exists a vector field W : R
3 → R

3, such that V = �× W.

Let L = {(x, y, z) ∈ R
3 | x ≥ 0, y ≥ 0, x2 + y2 + z2 ≤ 9}.

3. Find the flux of V through ∂L.

Let C denote the closed curve which is the intersection curve of ∂L and the plane z = 0.

4. Find the absolute value of the circulation
∮
C V · t ds.

A Divergence, rotation, vector potential, flux, circulation.

D Follow the guidelines. Apply Gauß’s theorem and Stokes’s theorem.
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I 1) We first get by straightforward calculations,

� · V = div V = (2 + 2xy) + (1 − 2xy) + (7 + 15z2) = 10 + 15z2

and

�× V = rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

2x + x2y y − xy2 7z + 5z3

∣∣∣∣∣∣∣∣∣∣∣
= − (

0, 0, x2 + y2
)
.

2) Since div V �= 0, there does not exist a vector field W, such that V = � × W, because
� · (�× V) = 0.
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3) It follows from Gauss’s theorem and 1) that

flux(∂L) =
∫

∂L

V · n dS =
∫

L

div V dΩ =
∫

L

(10 + 15z2) dΩ

= 10 vol(L) + 15
∫

L

z2 dΩ = 10 · 4π
3

· 33 · 1
4

+ 15
∫ 3

−3

z2 · π

4
] (9 − z2) dz

= 90π +
15π
4

· 2
∫ 3

0

(9z2 − z4) dz = 90π +
15π
2

[
3z3 − 1

5
z5

]3

0

= 90π +
15π
2

(
34 − 1

5
· 35

)
= 90π +

15π
2 · 5 · 34 (5 − 3)

= 90π + 243π = 333π.

0

0.5

1

1.5

2

2.5

3

y

0.5 1 1.5 2 2.5 3

x

Figure 1: The curve C and the quarter disc B inside.

4) The curve C encircles the quarter disc B in the first quadrant of centrum (0, 0) and radius 3.
Then by Stokes’s theorem and 1),∣∣∣∣

∮
C
V · t ds

∣∣∣∣ =
∣∣∣∣
∫

B

rot V · n dx dy

∣∣∣∣ =
∣∣∣∣−

∫
B

(0, 0, x2+y2) · (0, 0, 1) dx dy

∣∣∣∣
=

∫
B

(
x2 + y2

)
dx dy =

∫ π
2

0

{∫ 3

0

�2 · � d�

}
dϕ =

π

2
·
[
�4

4

]3

0

=
81π
8

.
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Example 2.7 A surface of revolution O with the Z-axis as rotation axis is given in semi polar coor-
dinates (�, ϕ, z) by

0 ≤ ϕ ≤ 2π, 0 ≤ � ≤ a og z = a − �3

a2
,

where a ∈ R+ is a given constant. The surface O is oriented, such that its unit normal vector n
always has a negative z-coordinate.

1. Sketch the meridian curve M of the surface.

2. Compute the surface integral

∫
O

(
a − z

a

) 2
3

dS.

Furthermore, let there be given the vector fields

V(x, y, z) =
(

y2

a2 + z2
− 1, 1 − x2

a2 + z2
, 1
)

, (x, y, z) ∈ R
3,

and

U(x, y, z) =
(

3z − y, 2x + 3z,
x3 + y3

a2 + z2

)
, (x, y, z) ∈ R

3.

3. Prove the existence of a constant β ∈ R, such that

V = β �×U,

and find β.

4. Find the flux∫
O

V · n dS.

5. Find a vector potential for V.

A Meridian curve; surface integral; flux; vector potential.

D There are many variants of calculations in this example.

I 1) The equation of the meridian curve is

z = a − �3

a

2

= a

{
1 −

(�

a

)3
}

, � ∈ [0, a].

2) We can compute the surface integral in several ways.
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Figure 2: The meridian curve M for a = 1.
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Figure 3: The surface O for a = 1.

a) When we use the reduction theorem of surface integrals we get

(3)
∫
O

(
a − z

a

) 2
3

dS =
∫

E

{
�(ϕ, t)

a

}2

‖N(ϕ, t)‖ dϕdt,

where we have used that
a − z

a
= 1 −

{
1 −

(�

a

)3
}

=
(�

a

)3

.

If we apply the parametric description

P (t) = t, Z(t) = a − 1
a2

t3, t ∈ [0, a],

we get

N(t, ϕ) = P (t) · (−Z ′(t) cos ϕ,−Z ′(t) sinϕ,P ′(t)) = t

(
3
a2

t2 cos ϕ,
3
a2

t2 sinϕ, 1
)

,

hence,

‖N(t, ϕ)‖ = t

√
1 +

9
a4

t4, t ∈ [0, a], ϕ ∈ [0, 2π].
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Then by insertion into (3),∫
O

{
a − z

a

} 2
3

dS =
∫ 1

0

⎧⎨
⎩
∫ 2π

0

t2

a2
· t
√

1 + 9
(

t

a

)4

dϕ

⎫⎬
⎭ dt

= 2π · a2

4

∫ a

0

{
1 + 9

(
t

a

)4
} 1

2

· 4t3

a4
dt =

πa2

18

∫ a

t=0

{
1 + 9

(
t

a

)4
} 1

2

d

(
1 + 9

(
t

a

)4
)

=
πa2

18
· 2
3

⎡
⎣(1 + 9

(
t

a

)4
) 3

2
⎤
⎦

a

t=0

=
πa2

27

{
10
√

10 − 1
}

.

b) Alternatively insert directly into a standard formula:∫
O

(
a − z

a

) 2
3

dS =
∫
M

2π
(

a − z(�)
a

) 2
3

� ds = 2π
∫
M

(�

a

)2

� ds

= 2πa

∫ a

0

(�

a

)3
√

1 + 9
(�

a

)4

d� =
2πa2

36

∫ 1

0

{1 + 9t} 1
2 d(1 + 9t)

=
2πa2

36
· 2
3

[
(1 + 9t)

3
2

]1
0

=
πa2

27

{
10
√

10 − 1
}

.
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3) Clearly, V is divergence free.
Then by a straightforward calculation,

�× U =

∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

∂

∂x

∂

∂y

∂

∂z

3z − y 2x + 3z x3+y3

a2+z2

∣∣∣∣∣∣∣∣∣∣∣∣
=
(

3y2

a2 + z2
− 3, 3 − 3x2

a2 + z2
, 2 + 1

)
= 3V,

hence

V =
1
3
�×U,

so β =
1
3
, and

1
3

U is a vector potential for V, cf. 5).

0

0.5

1

–1

–0.5

0.5

1

–1

–0.5

0.5

1

Figure 4: The body Ω for a = 1.

4) a) LetB(0, a) denote the disc in the (X,Y )-plane of centrum (0, 0) and radius A. The union
of the surfaces O and B(0, a) surrounds a simple body Ω. Since V is divergence fret,
the ingoing flux through O must be equal to the outgoing flux through B(0, a), where
n = (0, 0,−1), hence the flux is∫

O
V · n dS =

∫
B(0,a)

V · n dS =
∫

B(0),a)

(
y2

a

2

− 1, 1 − x2

a2
, 1

)
· (0, 0,−1) dS

= −
∫

B(0,a)

dS = − areal B(0, a) = −πa2.

b) Alternatively it follows from 3) and Stokes’s theorem that∫
O

V · n dS =
1
3

∫
O

(�× U) · n dS =
1
3

∮
∂O

U · t ds =
∫

B(0,a)

V · n dS = · · · = −πa2,

where the dots indicate that we proceed as above.

c) Alternatively we compute the line integral
1
3
∮

∂O U · t ds. Here ∂O is the circle � = a

in the plane z = 0 run through in a negative sense, because n has a negative z-component
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on O. Thus a parametric description of ∂O is

(x, y, z) = a(cos ϕ,− sin ϕ, 0), ϕ ∈ [0, 2π]

where

t = −(sin ϕ, cos ϕ, 0), ds = a dϕ,

thus∫
O

V · n dS =
1
3

∮
∂O

U · t ds =
1
3

∮
∂O

(
3z − y, 2x + 3z,

x3 + y3

a2 + z2

)
· t ds

= −a

3

∫ 2π

0

(
sinϕ, 2 cos ϕ, cos3 ϕ−sin3 ϕ

) · (sin ϕ, cos ϕ, 0)a dϕ

= −a2

3

∫ 2π

0

{sin2 ϕ + 2 cos2 ϕ}dϕ = −a2

3

(
3
2
· 2π

)
= −πa2.

d) Alternatively there are also variants in which Green’s theorem in the plane occurs. We
shall only demonstrate one of them;∫

O
V · n dS =

1
3

∮
∂O

t · U ds = −1
3

∫
B(0,a)

(
∂Uy

∂x
− ∂Ux

∂y

)
dS

= −1
3

∫
B(0,a)

(2 + 1) dS = − areal B(0, a) = −πa2.

5) Now, W0 is a vector potential for V, if V = �×W0. This is according to 3) fulfilled for

W0 =
1
3

U =
1
3

(
3z − y, 2x + 3z,

x3 + y3

a2 + z2

)
.

Alternatively (and far more difficult) we can find a vector potential W0 directly by means
of the standard formula,

W0(x) = −x ×
∫ 1

0

τ V(τ x) dτ.

Here∫ 1

0

τ V(τ x) dτ =
(∫ 1

0

τ

{
τ2y2

a2+τ2z2
−1

}
dτ,

∫ 1

0

τ

{
1− τ2x2

a2+τ2z2

}
dτ,

∫ 1

0

τ dτ

)
.

We get by a calculation for z �= 0,

∫ 1

0

τ · τ2y2

a2+τ2z2
dτ =

y2

z2

∫ 1

0

τ · τ2z2

a2+τ2z2
dτ =

y2

z2

∫ 1

0

τ

⎛
⎜⎝1 − 1

1 +
z2

a2
τ2

⎞
⎟⎠ dτ

=
y2

z2

[
τ2

2
− 1

2
a2

z2
ln
{

1 +
z2

a2
τ2

}]1

τ=0

=
y2

2z2
− a2y2

2z4
ln
(

1 +
z2

a2

)
.

By taking the limit, or by a direct computation, we get∫ 1

0

τ · τ2y2

a2 + τ2z2
dτ =

y2

4a2
for z = 0.
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Similarly∫ 1

0

τ · τ2x2

a2 + τ2z2
dτ =

x2

2z2
− a2x2

2z4
ln
(

1 +
z2

a2

)
for z �= 0,

and∫ 1

0

τ · τ2x2

a2 + τ2z2
dτ =

x2

4a2
for z = 0.

Due to the continuity it suffices in the following with the expressions for z �= 0. Then

∫ 1

0

τ V(τ x) dτ =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +
y2

z2
− a2y2

z4
ln
{

1 +
z2

a2

}

1 − x2

z2
+

a2x2

z4
ln
{

1 +
z2

a2

}
,

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We now find W0 by

W0(x) =
∫ 1

0

τ V(τ x) dτ × x

=
1
2

∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

−1+
y2

z2
− a2y2

z4
ln
(

1+
z2

a2

)
1− x2

z2
+

a2x2

z4
ln
(

1+
z2

a

)
1

x y z

∣∣∣∣∣∣∣∣∣∣∣∣

=
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z − y − x2

z
+

a2x2

z3
ln
(

1 +
z2

a2

)

x + z − y2

z
+

a2y2

z3
ln
(

1 +
z2

a2

)

−x − y +
y3 + x3

z2
− a2

z4
(x3 + y3) ln

(
1 +

z2

a2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, z �= 0.

For z = 0 the result is obtained by taking the limit.

This horrible expression is of course not equal to
1
3

U. On the other hand, a vector potential
is not unique. Here we can only check our computations by insertion.

C Test. Put

W0 = (W1,W2,W3) and V = (V1, V2, V3).
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Then

∂W3

∂y
− ∂W2

∂z
=

1
2

{
−1 +

3y2

z2
− 3a2y2

z4
ln
(

1 +
z2

a2

)
− 1 − y2

z2

+
3a2y2

z4
ln
(

1 +
z2

a2

)
− a2y2

z3
· 2z

1 +
z2

a2

· 1
a2

⎫⎪⎬
⎪⎭

=
1
2

{
−2 +

2y2

z2
− a2y2

z2
· 2
a2 + z2

}

=
1
2

{
−2 +

2y2

z2(a2 + z2)
(a2 + z2 − a2)

}
= V1.

The computation of
∂W1

∂z
− ∂W3

∂x
= V2 is similar, where we could apply the “asymmetry” (x and

y are interchanged and we also change sign). Finally,

∂W2

∂x
− ∂W1

∂y
=

1
2
{1 + 1} = 1 = V3,

hence the found vector field W0(x) is a vector potential for V.
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Example 2.8 1) Find the divergence of the vector field

V(x, y, z) = (sin y + cos z, sin z + cos x, sin x + cos y), (x, y, z) ∈ R
3.

2) Prove the existence of a constant α, such that rot V = αV. Then find a vector potential for V.

A Divergence, rotation and vector potential.

D Just compute. In 2) one might get a better solution.

I 1) Clearly,

div V = 0.

Then compute

�× v = rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

sin y + cos z sin z + cos x sinx + cos y

∣∣∣∣∣∣∣∣∣∣∣
= (− sin y − cos z,− sin z − cos x,− sin x − cos y) = −V(x, y, z).

2) It follows immediately that � × (−V) = V, thus −V is according to the definition a vector
potential for V.

Alternatively, V is divergence free, thus there exists a vector potential. One of these is
given by

W = −x × S(x) = S(x) × x,

where

S(x) =
∫ 1

0

τ V(τ x) dτ =

⎛
⎜⎜⎜⎜⎜⎝

∫ 1

0
τ{sin(τy) + cos(τz)} dτ

∫ 1

0
τ{sin(τz) + cos(τx)} dτ

∫ 1

0
τ{sin(τx) + cos(τy)} dτ

⎞
⎟⎟⎟⎟⎟⎠ .

By some small calculations we get

∫ 1

0

τ sin τv dτ =

⎧⎪⎨
⎪⎩

1
v2

{sin v − v cos v} for v �= 0,

0 for v = 0,

and

∫ 1

0

τ cos τv dτ =

⎧⎪⎪⎨
⎪⎪⎩

1
v2

{cos v − 1 + v sin v} for v �= 0,

1
2

for v = 0.
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By insertion of these expressions into S(x) we get the rather complicated vector potential

W(x) = S(x) × x

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
z
{sin z − z cos z} +

z

x2
{cos x − 1 + x sin x}

1
x
{sin x − x cos x} +

x

y2
{cos y − 1 + y sin y}

1
y
{sin y − y cos y} +

y

z2
{cos z − 1 + z sin z}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y

x2
{sin x − x cos x} +

1
y
{cos y − 1 + y sin y}

z

y2
{sin y − y cos y} +

1
z
{cos z − 1 + z sin z}

x

z2
{sin z − z cos z} +

1
x
{cos x − 1 + x sinx}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with suitable interpretations when x, y or z = 0.

 Vector potentials
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Example 2.9 Consider the vector field

V(x, y, z) = (2x + 3y, 2y + 3x,−4z), (x, y, z) ∈ R
3,

and the function

G(x, y, z) = αx2 + βy2 + γz2 + δxy, (x, y, z) ∈ R
3,

where α, β, γ, δ are constants.

1. Show that one can choose the constants α, β, γ, δ such that V = �G.

2. Compute the tangential line integral∫
K

V · t ds,

where K is the broken line composed of the two line segments from (2a, 0, a) via (2a, 0, 0) to (a, 0, 0).

3. Show that the vector field

W(x, y, z) =
(
2yz + xz − x2,−2xz − yz + y2, y2 − x2 + z2

)
, (x, y, z) ∈ R

3,

is a vector potential for V.

Let a be a positive constant, and let F be the oriented surface given by

x2 + y2 + z2 = a2, z ≥ 0,

with the unit normal vector n pointing away from (0, 0, 0).

4. Find the flux∫
F

V · n dS.

A Vector analysis, i.e. check the gradient field, tangential line integral, vector potential and flux.

D The examples can be solved in many ways, and I have probably not found all variants. Below we
give the following variants:

1) We solve 1) in 5 variants.
2) We solve 2) in 2 variants.
3) We solve 3) in 2 variants.
4) We solve 4) in 4 variants and 1 subvariants (and there are more; we miss e.g. the calculations

when F is a surface of revolution).

I 1) First variant. A simple test.
When we compute �G we get

�G = (2αx + δy, δx + 2βy, 2γz).

Choose α = 1, β = 1, γ = −2 and δ = 3. Then

�G = (2x + 3y, 3y + 2y,−4z) = V,

and V = �G is a gradient field with the integral

G(x, y, z) = x2 + y2 − 2z2 + 3xy.

 Vector potentials
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Second variant. Manipulation.
We conclude from

V · dx = (2x + 3y)dx + (2y + 3x)dy − 4z dz

= d
(
x2
)

+ d
(
y2
)− d

(
2z2

)
+ 3{y dx + x dy}

= d
(
x2 + y2 − 2z2 + 3xy

)
that

G(x, y) = x2 + y2 − 2z2 + 3xy

is an integral of �G = V, and V is a gradient field.
Then by comparison, α = 1, β = 1, γ = −2, δ = −3.

Third variant. Indefinite integration.
Put

ω = V · dx = (2x + 3y)dx + (2y + 3x)dy − 4z dz.

Then

F1(x, y, z);=
∫

(2x + 3y)dx = x2 + 3xy,

thus

ω − dF1 = (2x+3y)dx + (2y+3x)dy − 4z dz − {(2x+3y)dx + 3x dy} = 2y dy − 4z dz,

which is reduced to

ω − d
(
x2 + 3xy

)
= d

(
y2 − 2z2

)
.

Then by a rearrangement,

ω = d
(
x2+3xy

)
+ d

(
y2−2z2

)
= d

(
x2+y2−2z2+3xy

)
,

and we conclude that

G(x, y, z) = x2 + y2 − 2z2 + 3xy

is an integral of V, i.e. V = �G, and α = 1, β = 1, γ = −2, δ = 3.
The latter two variants assume that we have proved that V is a gradient field. First note that

rot V =

∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

∂

∂x

∂

∂y

∂

∂z

2x + 3y 3x + 2y −4z

∣∣∣∣∣∣∣∣∣∣∣
= (0−0, 0−0, 3−3) = 0,

and V is rotation free. The domain R
3 is simply connected (it is even convex), hence V is a

gradient field.
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Fourth variant. Integration along a broken line.
We get by a tangential line integration along the broken line

(0, 0, 0) −→ (x, 0, 0) −→ (x, y, 0) −→ (x, y, z) in R
3

that∫ x

0

V · dx =
∫ x

0

2t dt +
∫ y

0

(2t + 3x) dt −
∫ z

0

4t dt = x2 + y2 + 3xy − 2z2.

Since we already have proved that V is a gradient field, an integral is given by

G(x, y, z) = x2 + y2 − 2z2 + 3xy, �G = V,

and we get by comparison that α = 1, β = 1, γ = −2, δ = 3.
Fifth variant. Radial integration.

We have above proved that V is a gradient field. Therefore,

G(x, y, z) = (x, y, z) ·
∫ 1

0

V(xτ, yτ, zτ) dτ

= (x, y, z) ·
∫ 1

0

((2x + 3y)τ, (2y + 3x)τ,−4zτ) dτ

= (x, y, z) · (2x + 3y, 2y + 3x,−4z)
∫ 1

0

τ dτ

=
1
2
{
(2x2 + 3xy) + (2y2 + 3xy) − 4z2

}
= x2 + y2 − 2z2 + 3xy

is an integral of V, i.e. �G = V, and we get by comparison that α = 1, β = 1, γ = −2,
δ = 3.

2) First variant. The gradient theorem.
According to 1), the field V is a gradient field with the integral

G(x, y, z) = x2 + y2 − 2z2 + 3xy.

Then by the gradient theorem,∫
K

V · t ds = G(a, 0, 0) − G(2a, 0, a) = a2 − (4a2 − 2a2) = −a2.

Second variant. Line integral.
We have on the line segment from (2a, 0, a) to (2a, 0, 0) that x = 2a and y = 0, while z runs
through the interval [0, a] from a to 0 (the reverse direction).
On the line segment from (2a, 0, 0) to (a, 0, 0), the variable x runs through the interval
[a, 2a] from 2a towards a, also in the reverse direction, while y = 0 and z = 0.
As a conclusion we get∫

K
V · t ds =

∫ 0

a

(−4t)dt +
∫ a

2a

(2t + 3 · 0)dt =
[−2t2

]0
a

+
[
t2
]a
2a

= 2a2 + (a2 − 4a2) = −a2.
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3) First variant. Test.
We shall only prove that V = �× W. We get

�× W =

∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

∂

∂x

∂

∂y

∂

∂z

2yz + xz − x2 −2xz − yz + y2 y2 − x2 + z2

∣∣∣∣∣∣∣∣∣∣∣
= (2y − (−2x − y), (2y + x) − (−2x),−2z − 2z)

= (3y + 2x, 3x + 2y,−4z) = V,

and W is a vector potential for V.

 Vector potentials
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Second variant. Insertion into a standard formula.
The assumptions are that R

3 is star shaped (obvious) and that V is divergence free. By a
small computation,

div V = 2 + 2 − 4 = 0,

and it follows that V has a vector potential, which can be found by the formula

W0(x) = −x ×
∫ 1

0

τ V(τx) dτ =
{∫ 1

0

τ V(τx) dτ

}
× x.

Since V is homogeneous of first degree,

V(τx) = τ V(x),

it follows by insertion that

W0(x) =
{∫ 1

0

τ · τ dτ

}
V(x) × x =

1
3

∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

2x + 3y 2y + 3x −4z

x y z

∣∣∣∣∣∣∣∣∣∣
=

1
3
(
z{2y+3x}+4zy,−4zx−z{2x+3y}, 2xy+3y2−2xy−3x2

)

=
1
3

(z{3x + 6y},−z{6x + 3y}, 3y2 − 3x2)

= (2yz + xz,−2xz − yz, y2 − x2)

= W(x) +
(−x2, y2, z2

)
,

hence

�× W = �× W0 + �× (−x2, y2, z2
)

= V + 0 = 0.

We conclude that both W0 and W are vector potentials for V.

4) First variant. Stokes’s theorem.
When the unit normal vector is pointing away from (0, 0, 0), we get the natural orientation
of the bounding curve (a circle in the XY -plane),

δF : r(t) = a(cos t, sin t, 0), t ∈ [0, 2π],

in its positive sense.
It follows from 3) that V = �× W, hence the flux is according to Stokes’s theorem∫

F
V · n dS =

∫
F

(�× W) · n dS =
∫

δF
W · t ds

=
∫ 2π

0

(0−a2 cos2 t, 0−a2 sin2, a2 sin2 t−a2 cos2 t) · a(− sin t, cos t, 0) dt

= a3

∫ 2π

0

{cos2 t sin t − sin2 t cos t} dt = a3

[
−cos3 t

3
− sin3 t

3

]2π

0

= 0.
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Figure 5: The half sphere F and the “bounding curve” δF for a = 1.

Subvariant. From the second variant of 3) we also obtain that V = �× W0. Now, W0 =
(0, 0, · · · ) and t = (· · · , · · · , 0) on δF , so an application of Stokes’s theorem shows that the
flux is∫

F
V · n dS =

∫
F

(�× W0) · n dS =
∫

δF
W0 · t ds =

∫
δF

0 ds = 0.

Second variant. Surface integral, rectangular coordinates.
The unit normal vector is

n =
1
a

(x, y, z), on F ,

hence the flux is∫
F

V · n dS =
∫
F

1
a

(2x+3y, 3x+2y,−4z) · (x, y, z) dS =
1
a

∫
F

(
2x2+3xy+2y2−4z2

)
dS

=
2
a

∫
F

(
x2 + y2 − 2z2 +

3
2

xy

)
dS =

2
a

∫
F

(x2 + y2 − 2z2) dS,

because
∫
F xy dS = 0 of symmetric reasons.

It also follows by the symmetry that∫
F

x2 dS =
∫
F

y2 dS.

Let F1 be given by

x2 + y2 + z2 = a2, y ≥ 0.

Then we get in exactly the same way,∫
F

x2 dS =
∫
F1

x2 dS =
∫
F1

z2 dS =
∫
F

z2 dS,

thus∫
F

x2 dS =
∫
F

y2 dS =
∫
F

z2 dS.
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Hence by insertion,∫
F

V · n dS =
2
a

{∫
F

x2 dS +
∫
F

y2 dS − 2
∫
F

z2 dS

}
= 0.

Third variant. Surface integral, spherical coordinates.
In spherical coordinates a parametric description of the surface is given by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = a sin θ cos ϕ,

y = a sin θ sinϕ,

z = a cos θ,

θ ∈
[
0,

π

2

]
, ϕ ∈ [0, 2π].

Thus the normal vector becomes

N(θ, ϕ) =

∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

a cos θ cos ϕ a cos θ sinϕ −a sin θ

−a sin θ sin ϕ a sin θ cos ϕ 0

∣∣∣∣∣∣∣∣∣∣
= a2 (sin2 θ cos ϕ, sin2 θ sin ϕ, sin θ cos θ)

= a2 sin θ (sin θ cos ϕ, sin θ sin ϕ, cos θ),
and we note that the z-component is positive, showing that we have obtained the right
orientation. Then

V(x(θ, ϕ)) · N(θ, ϕ)

= (2a sin θ cos ϕ+3a sin θ sin ϕ, 3a sin θ cos ϕ+2a sin θ sinϕ,−4a cos θ) ·
·(sin θ cos ϕ, sin θ sin ϕ, cos θ) a2 sin θ

= a3
{
2 sin2 θ cos2 ϕ + 3 sin2 θ sin ϕ cos ϕ + 3 sin2 θ sin ϕ cos ϕ

+2 sin2 θ sin2 ϕ − 4 cos2 θ
}

sin θ

= a3
{
2 sin2 θ + 6 sin2 θ sin ϕ cos ϕ − 4 cos2 θ

}
sin θ

= a3
{
2 − 2 cos2 θ − 4 cos2 θ + 6 sin2 θ sin ϕ cos ϕ

}
sin θ

= 2a3
{
1 − 3 cos2 θ + 3 sin2 θ sin ϕ cos ϕ

}
sin θ.

The flux is∫
F

V · n dS =
∫

E

V(x(θ, ϕ)) · N(θ, ϕ) dθ dϕ

= 2a3

∫ 2π

0

{∫ π
2

0

(
1 − 3 cos2 θ + 3 sin2 θ sinϕ cos ϕ

)
sin θ dθ

}
dϕ

= 4πa3

∫ π
2

0

{
1 − 3 cos2 θ

}
sin θ dθ = 4πa3

[− cos θ + cos3 θ
]π

2

0
= 0.
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Fourth variant. Gauß’s theorem.
First note that F does not surround any body Ω, so we cannot apply Gauß’s theorem
immediately. However, if we add the plane surface (“the bottom”)

B = {(x, y, 0) | x2 + y2 ≤ a2}

with the unit normal vector n = (0, 0,−1), then the union F ∪B surrounds the half ball Ω.
We found above that div V = 0, so we conclude by Gauß’s theorem that∫

F
V · n dS +

∫
B

V · (0, 0,−1) dS =
∫

Ω

div V dΩ =
∫

Ω

0 dΩ = 0,

hence by a rearrangement,∫
F

V · n dS = +
∫

B

V · (0, 0, 1) dS =
∫

B

0 dS = 0,

where we have used that V = (2x + 3y, 3x + 2y, 0) on B.
Fifth variant. The surface as a surface of revolution.

According to the second variant we shall compute the surface integral∫
F

V · n dS =
2
a

∫
F

(x2 + y2 − 2z2) dS.

It can of course be done do by considering F as a surface of revolution. We shall leave this
variant to the reader.

 Vector potentials
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Example 2.10 Given the two functions

L(x, y) = ey + y(ex − exy), (x, y) ∈ R
2,

M(x, y) = ex + x(ey − exy), (x, y) ∈ R
2.

1) Prove that the vector field V(x, y) = (L(x, y),M(x, y)), (x, y) ∈ R
2, is a gradient field, and find

all integrals of V.

2) Show that the vector field

U(x, y, z) = (z M(x, y),−z L(x, y), L(x, y) + M(x, y)), (x, y, z) ∈ R
3,

is not a gradient field, while there exists a vector potential for U. (One shall not find such a vector
potential).

A Gradient field, vector potential.

D We shall prove in three ways that V is a gradient field. That U has a vector potential is shown
by means of the necessary and sufficient conditions.

I 1) First note that L(x, y) and M(x, y) are of class C∞ in all of R
2.

First method. Manipulation.
By means of the rules of calculations we get by some manipulation,

Ldx + M dy = {ey+y(ex−exy)} dx + {ex+x(ey−exy)} dy

= {eydx+xeydy} + {yexdx+exdy} − exy{y dx+x dy}
= {eydx+xd (ey)} + {y d (ex)+exdy} − exyd(xy)
= d (xey) + d (yex) − d (exy) = d (xey + yex − exy)
= �F · (dx, dy).

Hence (L(x, y),M(x, y)) is a gradient field and its integrals are given by

F (x, y) = xey + yex − exy + C, C arbitrary constant.

Second method. Indefinite integration.
We first get

F1(x, y) =
∫

L(x, y) dx =
∫

{ey + y(ex − exy)} dx = xey + yex − exy.

Then by a check

∂F1

∂y
= xey+ex−xexy = ex+x(ey−exy) = M(x, y),

which shows that (L(x, y),M(x, y)) is a gradient field and that its integrals are

F (x, y) = F1(x, y) + C = xey + yex − exy + C, (x, y) ∈ R
2,

where C is an arbitrary constant.
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Third method. Integration along a broken line followed by a check.
When we integrate Ldx + M dy along the broken line

(0, 0) −→ (x, 0) −→ (x, y),

we get the candidate

F (x, y) =
∫ x

0

L(t, 0) dt +
∫ y

0

M(x, t) dt =
∫ x

0

dt +
∫ y

0

{
ex + x(et − ext)

}
dt

= x +
[
tex + xet − ext

]y
0

= x + yex + xey − exy − x + 1
= yex + xey − exy + 1.

By testing (this is mandatory by this method) we get

∂F

∂x
= yex + ey − yexy = ey + y(ex − exy) = L(x, y),

∂F

∂y
= ex + xey − xexy = ex + x(ey − exy) = M(x, y).

It follows from the above that (L(x, y),M(x, y)) is a gradient field and that its integrals are

F (x, y) = xey + yex − exy + C, C a arbitrary constant.

2) Now

∂

∂z
{z M(x, y)} = M(x, y) = ex + x(ey − exy)

and

∂

∂x
{L(x, y) + M(x, y)} = yex − y2exy + ex − exy − xyexy �= ∂

∂z
{z M(x, y)},

so the necessary conditions of a gradient field are not satisfied, and U is not a gradient field.

Clearly, U is of class C∞ in all of R
3, and R

3 is star shaped. (It is even convex.)
As (L,M) is a gradient field, we have in particular

∂L

∂y
=

∂M

∂x
,

thus

div U = z
∂M

∂x
− z

∂L

∂y
+ 0 = z

{
∂M

∂x
− ∂L

∂y

}
= 0,

and U is divergence free and defined in a star shaped domain. Therefore U has a vector
potential.

Remark. In principal the integrals of the formula of the vector potential can be computed.
However, the result is very difficult to manage with a lot of exceptional cases. For this reason
it is highly recommended always to find some other method before one tries to find the vector
potential by means of the standard formulæ. ♦
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Example 2.11 Given the vector field

V(x, y, z) = (cos y−sin z, cos z−sin x, cos x−sin y), (x, y, z) ∈ R
3.

1) Find the divergence � · V and the rotation �× V.

2) Show the existence of a constant α, such that αV is a vector potential for V.

3) Let the curve K be the boundary of the square of vertices (0, 0, 0), (0, π, 0), (0, π, π) and (0, 0, π),
in the given succession. Find the circulation∮

K
V · t ds.

4) Let

Ω =
{
(x, y, z) ∈ R

3 | 1 ≤ x2 + y2 + z2 ≤ 4
}

.

Find the flux of the vector field

U(x, y, z) = (x, y, z) + V(x, y, z), (x, y, z) ∈ R
3,

through ∂Ω, when the unit normal vector n of ∂Ω is pointing away from Ω.

A Divergence, rotation, vector potential, circulation, flux.

D Apply Stokes’s theorem and Gauß’s theorem.

I 1) It follows immediately that

div V = � · V = 0.

Then

rot V = �× V =

∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

∂

∂x

∂

∂y

∂

∂z

cos y−sin z cos z−sin x cos x−sin y

∣∣∣∣∣∣∣∣∣∣∣
= (− cos y + sin z,− cos z + sinx,− cos x + sin y)

= −(cos y − sin z, cos z − sin x, cos x − sin y) = −V.

2) If we choose α = −1 in 1), then

�× (−V) = V,

and it follows that −V is a vector potential for V.

3) Here we give two variants.
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Figure 6: The square K.

a) Stokes’s theorem. The square K lies in the Y Z-plane, and the unit normal vector is in the
chosen orientation given by

n = (1, 0, 0).

Then by 1) and Stokes’s theorem,∮
K

V · t ds =
∫
K̃

n · rot V dS =
∫
K̃
(− cos y + sin z) dS

=
∫ π

0

{∫ π

0

(− cos y) dy

}
dz +

∫ π

0

dy ·
∫ π

0

sin z dz

= 0 + π · [− cos z]π0 = 2π.

b) Straight forward computation of the line integral. The curve K is composed of the curves

K1 : r1(t) = (0, t, 0), t ∈ [0, π], t = (0, 1, 0),

K2 : r2(t) = (0, π, t), t ∈ [0, π], t = (0, 0, 1),

K3 : r3(t) = (0, π − t, π), t ∈ [0, π], t = (0,−1, 0),

K4 : r4 = (0, 0, π − t), t ∈ [0, π], t = (0, 0,−1).

Then by insertion,∫
K

V · t ds =
∫
K1

(cos z−sin x)ds +
∫
K2

(cos x−sin y)ds

+
∫
K3

(−cos z+sinx)ds +
∫
K4

(−cos x+sin y)ds

=
∫ π

0

(1−0)dt +
∫ π

0

(1−sin π)dt

+
∫ π

0

(−cos π+sin 0)dt +
∫ π

0

(−1+sin 0)dt

= π + π + π − π = 2π.
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c) It follows from 1) and Gauß’s theorem that

flux =
∫

∂Ω

U · n dS =
∫

Ω

div U dΩ =
∫

Ω

{3 + div V} dΩ

=
∫

Ω

(3 + 0) dΩ = 3vol(Ω) = 3 · 4π
3

· (23 − 13) = 28π.

Example 2.12 1. Find the rotation of the vector field

U(x, y, z) = (−yz, 0, xy), (x, y, z) ∈ R
3,

and show that U is not a gradient field.
A space curve K is given by the parametric description

(x, y, z) = r(t) =
(
cos3 t, 3 cos t, sin3 t

)
, t ∈

[
0,

π

2

]
.

2. Compute the tangential line integral∫
K

U · dx.

3. Find a function G(x, z), (x, z) ∈ R
2, such that the vector field

W(x, y, z) = (0, y G(x, z), 0), (x, y, z) ∈ R
3,

is a vector potential for U.

A Rotation; tangential line integral; vector potential.

D Use the standard methods in the former two questions and check the conditions of a vector potential
in the latter question.
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Figure 7: The space curve K.
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I 1) It follows immediately that U is divergence free. Then

rot U =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

−yz 0 xy

∣∣∣∣∣∣∣∣∣∣∣
= (x,−y − y, z) = (x,−2y, z).

It follows from rot U(x) �= 0 for x �= 0, that U is not a gradient field.

2) We get from

r(t) =
(
cos3 t, 3 cos t, sin3 t

)
that

r′(t) =
(−3 cos2 t sin t,−3 sin t, 3 sin2 t cos t

)
,
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and the tangential line integral is reduced to∫
K

U · dx = 3 · 3
∫ π

2

0

(− cos t sin3 t, 0, cos4 t) · (− cos2 t sin t,− sin t, sin2 t cos t) dt

= 9
∫ π

2

0

{
cos3 t sin4 t + cos5 t sin2 t

}
dt

= 9
∫ π

2

0

cos3 t sin2{sin2 t + cos2 t} dt = 9
∫ π

2

0

cos3 t sin2 t dt

= 9
∫ π

2

0

(1 − sin2 t) sin2 t · cos t dt = 9
∫ 1

0

(u2 − u4) du

= 9
(

1
3
− 1

5

)
= 9 · 2

15
=

6
5
.

3) If W(x, y, z) = (0, y G(x, z), 0), then

rot W =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

0 y G(x, z) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−y G′

z(x, z), 0, y G′
x(x, z))

is equal to U for

G′
z(x, z) = z and G′

x(x, z) = x,

hence by integration

G(x, z) =
1
2

z2 + ϕ1(x) =
1
2

x2 + ϕ2(z),

and by a rearrangement

1
2

z2 − ϕ2(z) =
1
2

x2 − ϕ1(x) = constant,

so

G(x, z) =
1
2

x2 +
1
2

z2 + C, C arbitrary constant.

Remark. If we instead apply then we should first notice that U is divergence free in the star
shaped (convex) domain R

3 containing 0. This implies the existence of the vector potentials
and that one of these can be found by the formula

W0(x) =
∫ 1

0

T(τ x) dτ, where T(x) = U(x) × x.

First calculate

T(x) = U(x) × x =

∣∣∣∣∣∣∣∣∣∣

ex ey ez

−yz 0 xy

x y z

∣∣∣∣∣∣∣∣∣∣
=
(−xy2, x2y + yz2,−y2z

)
.
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All coordinates are precisely of degree 3, thus by an integration with respect to τ ,

W0(x) =
∫ 1

0

T(τ x) dτ = T(x)
∫ 1

0

τ3 dτ =
(
−1

4
xy2,

1
4

(x2 + z2)y,−1
4

y2z

)
.

We see that W0(x) is a vector potential for U(x). It is, however, not of the wanted type. ♦

Example 2.13 Two vector fields V, W : R
3 → R

3 are given by

V(x, y, z) = (ey sin z, x ey sin z, x ey cos z) ,

W(x, y, z) =
(
x + 2x ey cos z,−2ey cos z,−z + z3

)
.

1) Find the divergence and the rotation of both vector fields.

2) Show that V is a gradient field and find all its integrals.

3) Compute the tangential line integral∫
K

V · t ds,

where K is the broken line composed of the three line segments: from (0, 0, 0) to (1, 0, 0), from
(1, 0, 0) to (1, 2, 0), and from (1, 2, 0) to

(
1, 2,

π

2

)
.

4) Show the existence of a constant α, such that αW is a vector potential for V; find α.

5) Let F be the sphere of centrum (0, 0, 0) and radius 3. Find the flux∫
F

W · n dS,

where the unit normal vector n is pointing away from the centrum of F .

A Divergence and rotation; gradient field and integrals; tangential line integral; vector potential; flux.

D It is in some sense better to go through the example in an other succession than the above. If we
let 4) follow immediately after 1), then it becomes obvious. We give three variants of 2) and two
variants of 3), while 5) is given in 3 variants.
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I 1. We get by straightforward computations,

div V = 0 + x ey sin z − x ey sin z = 0,

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

ey sin z xey sin z xey cos z

∣∣∣∣∣∣∣∣∣∣∣
=

⎛
⎜⎜⎜⎜⎝

xey cos z − xey cos z

ey cos z − ey cos z

ey sin z − ey sin z

⎞
⎟⎟⎟⎟⎠

= 0,

div W = 1 + 2ey cos z − 2ey cos z − 1 + 3z2 = 3z2,

rot W =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

x + 2xey cos z −2ey cos z −z + z3

∣∣∣∣∣∣∣∣∣∣∣
= (0 − 2ey sin z,−2xey sin z − 0, 0 − 2xey cos z)

= −2 (ey sin z, xey sin z, xey cos z) = −2V.

4. As rot W = � × W = −2V, we have � ×
(
−1

2
W

)
= V, and it follows immediately that

−1
2

W is a vector potential for V, and that α = −1
2
.

2. As rot V = 0 and R
3 is star shaped (it is even convex), V is a gradient field. Its integrals may

be found in one of the following three ways:

First variant. Indefinite integration.

F1(x, y, z) =
∫

Vx(x, y, z) dx =
∫

ey sin z dx = x ey sin z,

where

�F1 = (ey sin z, x ey sin z, x ey cos z) = V,

proving that F1 is an integral of V and all integrals are given by

F (x, y, z) = x ey sin z + C, C arbitrary constant.

Second variant. Manipulation, using the rules of calculations. It follows immediately from
V · dx = ey sin z dx + xy sin z dy + xey cos z dz

= ey · sin z dx + x · sin z · d (ey) + xey d(sin z)
= d (xey sin z) = d (xey sin z + C) ,

that the integrals are given by

F (x, y, z) = x ey sin z + C, C arbitrary constant.
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Third variant. Integration along a broken line

(0, 0, 0) −→ (x, 0, 0) −→ (x, y, 0) −→ (x, y, z).

This gives the candidates

F (x, y, z) = C +
∫ x

0

0 dt +
∫ y

0

0 dt +
∫ z

0

x ey cos t dt

= x ey sin z + C.

Now, we have proved above that the integrals exist, so we conclude that these are the set
of all integrals when the arbitrary constant C ∈ R varies.
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Figure 8: The curve K.

3. We get by the gradient theorem that∫
K

V · t ds = F
(
1, 2,

π

2

)
− F (0, 0, 0) = 1 · e2 · sin π

2
− 0 = e2.

Alternatively, write K = K1 + K2 + K3, where

K1 : (x, y, z) = (t, 0, 0), t ∈ [0, 1], t = (1, 0, 0),

K2 : (x, y, z) = (1, t, 0), t ∈ [0, 2], t = (0, 1, 0),

K3 : (x, y, z) = (1, 2, t), t ∈
[
0,

π

2

]
, t = (0, 0, 1),

thus∫
K

V · t ds =
∫ 1

0

0 dt +
∫ 2

0

0 dt +
∫ π

2

0

1 · e2 cos t dt = e2.

4. This was answered previously.
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Figure 9: The intersection of the ball Ω with the (X,Z)-plane.
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5. The sphere F encloses the ball Ω, so it follows from Gauß’s theorem and 1) that∫
F

W · n dS =
∫

Ω

div W dΩ =
∫

Ω

3z2 dΩ.

This space integral is then computed in three different ways:

First variant. the slicing method. At height z ∈ [−3, 3] the ball is intersected into a disc B(z)
of radius � =

√
9 − z2, thus

flux =
∫

Ω

3z2 dΩ =
∫ 3

−3

3z2

{∫
B(z)

dS

}
dz =

∫ 3

−3

3z2 areal B(z) dz

=
∫ 3

−3

3z2 · π (9 − z2
)

dz = 3π
∫ 3

−3

(
9z2 − z4

)
dz = 3π

[
3z2 − z5

5

]3

−3

= 3π · 2
(

81 − 3 · 81
5

)
= 6π · 81 ·

(
1 − 3

5

)
=

972π
5

.

Second variant. The post method. We get in polar coordinates

flux =
∫

Ω

3z2 dz =
∫ 2π

0

{∫ 3

0

(∫ √
9−
2

−
√

9−
2
3z2 dz

)
� d�

}
dϕ

= 2π
∫ 3

0

[
z3
]√9−
2

−
√

9−
2
� d� = 2π

∫ 3

0

(
9 − �2

) 3
2 · 2� d�

= 2π
[
−2

5
(
9 − �2

) 5
2

]3

0

=
4
5

π · 9 5
2 =

4π
5

· 35 =
972π

5
.

Third variant. Spherical coordinates. When we use these we get

flux =
∫

Ω

3z2 dz =
∫ 2π

0

{∫ π

0

(∫ 3

0

3r2 cos2 θ · r2 sin θ dr

)
dθ

}
dϕ

= 2π
∫ π

0

3 cos2 θ sin θ dθ ·
∫ 3

0

r5 dr = 2π
[− cos3 θ

]π
0
·
[
r5

5

]3

0

= 2π · 2 · 35

5
=

972π
5

.

Remark. A direct computation of the flux by the definition alone looks impossible, because

W · n = (x + 2xey cos z,−2ey cos z,−z + z3) · 1
3

(x, y, z)

=
1
3
{
x2 + 2x2ey cos z − 2yey cos z − z2 + z4

}
,

and what then? �
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Example 2.14 Given the vector field

V(x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

(−y, x, 0), x2 + y2 < a2,

a2

x2 + y2
(−y, x, 0), x2 + y2 ≥ a2.

1) Let K be the circle of constant values of the coordinates � and z, and with a positive orientation
with respect to the unit vector ez. Prove that

∮
K

V · t ds =

⎧⎨
⎩

2π�2, � < a,

2πa2, � ≥ a.

2) Show that (0, 0,W ), where

W (x, y, z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

(a2 − x2 − y2), x2 + y2 < a2,

a2 ln
a√

x2 + y2
, x2 + y2 ≥ a2,

is a vector potential for V.

 Vector potentials
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A Circulation along a curve; vector potential.

D Compute the circulation straight forward. (Consider if it is possible to use Stokes’s theorem instead.
Show that �× (W ez) = V.

I 1) Since V does not depend on z, we may assume that K lies in the XY -plane. Then by Stokes’e
theorem,∮

K
V · t ds =

∫
B

ez · rot V dS,

where B denoted the disc of radius �. If � > a, the right hand side does not look nice, so we
compute instead the circulation by the definition. Let

K : (� cos ϕ, � sin ϕ), ϕ ∈ [0, 2π].

Then

t ds = � (− sin ϕ, cos ϕ) dϕ.

Then for � < a,∮
K

V · t ds =
∫ 2π

0

� (− sin ϕ, cos ϕ) · ϕ (− sin ϕ, cos ϕ) dϕ

=
∫ 2π

0

�2
(
sin2 ϕ + cos2 ϕ

)
dϕ

= �2

∫ 2π

0

dϕ = 2π�2 for � < a,

and we have for � ≥ a∮
K

V · t ds =
∫ 2π

0

a2

�2
· � (− sin ϕ, cos ϕ) · � (− sin ϕ, cos ϕ) dϕ

= a2

∫ 2π

0

dϕ = 2πa2, for � ≥ a,

thus the first claim has been proved.

2) If x2 + y2 < a2, then

�× (W ez) =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

0 0 1
2 (a2 − (x2 + y2))

∣∣∣∣∣∣∣∣∣∣∣
= (−y, x, 0) = V,
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–1.5

–1

–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0.5 1 1.5

Figure 10: The curve K in the XY -plane for a = 1 and � = 1.5.

and if x2 + y2 > a2, then

�× (W ez) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

0 0 a2 ln

(
a√

x2 + y2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

a2

2

(
− ∂

∂t
(x2 + y2) ,

∂

∂x
(x2 + y2) , 0

)
=

a2

x2 + y2
(−y, x, 0) = V.

By the continuity from the inside and from the outside we get

�× (W ez) = (−y, x, 0) = V for x2 + y2 = a2.

Hence we have proved that W ez is a vector potential for V.

 Vector potentials
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3 Green’s identities

Example 3.1 Consider a bounded domain Ω ⊂ R
3 with its boundary consisting of m + 1 disjoint

surfaces F0, F1, . . . , Fm, such that F0 surrounds all the others.
We shall find a function w, which in Ω0 fulfils Poisson’s equation

�2w = p,

and which has constant values on the surfaces F0, F1, . . . , Fm. Let Φi denote the flux of �w through
Fi, i.e.

Φi =
∫
Fi

∂w

∂n
dS.

1. Let the function p be given, and assume that w is zero on F0, and for each i ∈ {1, . . . ,m} either
Φi or the value of w is given.

show that w is uniquely determined.

Then let Ω be an unbounded domain with its boundary consisting of m disjoint and bounded surfaces
F1, . . . , Fm. Then the uniqueness theorem proved above also holds when the condition on F0 is
replaced by the following:
There exist positive constants C1, C2, such that

‖x‖ |w(x)| ≤ C1 and ‖x‖2‖ � w(x)‖ ≤ C2 for all x ∈ Ω.

2. Prove this by considering Ω(R) = Ω ∩ K(0;R) and then let R tend to plus infinity.

A Uniqueness theorem for a mixed Dirichlet/Neumann problem for Poisson’s equation.

D Assume that w and w̃ are solutions. Put f = v − w̃ and apply Green’s first theorem by choosing
g = f and applying that f(x) = 0 on every Fi.

In 2) we estimate the integrand in
∫

∂Ω(R)
f

∂f

∂n
dS.

Remark 1. The example is dealing with a uniqueness theorem within a smaller class of functions
than the mathematically most natural class. Therefore, on cannot expect that there actually exists
a solution within this class. The problem is that the Neumann problem in some cases is difficult
to treat. However, we can succeed if we have a boundary surface Fi with a Dirichlet condition
instead, i.e. f(x) = αi on Fi. The situation is worse if we are given the flux Φi on Fi, because
then we cannot in general conclude that f(x) is equal to some (unknown) constant on Fi. This is
in general not the case, so we shall usually only expect to be able to show the uniqueness and not
the existence of a solution within the given class of functions. ♦

I 1) First give the problem a mathematical description:

(4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2w = p, in Ω0 Poisson equation

⎧⎨
⎩

w(x) = 0, in F0

w(x) = αi, in Fi

i = 0

i ∈ {i1, . . . , ik}

⎫⎬
⎭ Dirichlet conditions

⎧⎪⎨
⎪⎩

∫
Fi

∂w

∂n
dS = Φi,

w(x) = αi in Fi

i /∈ {i1, . . . , ik}

i /∈ {i1, . . . , ik}

Neumann conditions

additional condition.

 Green’s identities
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It will be convenient to put

A =
k⋃

j=1

Fij
∪ F0 og B = ∂Ω \ A, dvs. ∂Ω = A ∪ B, disjunkt.

Assume that w and w̃ are solutions of (4). By putting f = w − w̃ it follows by the linearity
and the additional condition that f satisfies

(5)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�2f = 0,

f(x) = 0 p̊a A ∪ B = ∂Ω,

∫
Fi

∂f

∂n
dS = 0 i /∈ {i1, . . . , ik}.

Choose g = f in Green’s first formula. Then∫
Ω

{f �2 f+�f · �f} dΩ =
∫

Ω

{0+‖ � f‖2} dΩ =
∫

∂Ω

f
∂f

∂n
dS = 0,
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because f(x) = 0 on ∂Ω, thus∫
Ω

‖ � f‖2dΩ = 0.

Since ‖� f‖2 is continuous and nonnegative, we must have �f = 0, and we conclude that f is
a constant. Now, f is continuous and zero on the boundary, so f must be identical zero, thus
w = w̃, and we have proved the uniqueness in the bounded case.

Remark 2. Note that the flux Φi through some of the surfaces Fi does not enter the argument
at all, since we are only using the strong additional condition that w(x) = αi (the same though
unknown constant) for i /∈ {i1, . . . , ik}. Hence the problem is formally over-determined, since
we do not apply all our information. (If this information is not in agreement with that we
only get the zero solution, we clearly have a problem. This illustrates what is mathematically
“wrong” with this example). ♦

2) Then consider the unbounded case with the additional growth conditions as a replacement of
the missing surface F0.

When we take the intersection of Ω with the ball K(0;R), we get a bounded domain Ω(R). It
is left to the reader to sketch the situation on a figure.

Then split the boundary of Ω(R) in the following way

A(R) = K(0;R) ∩
k⋃

j=1

Fij
,

B(R) = K(0;R) ∩
⋃

i/∈{i1,...,ik}
Fi,

C(R) = ∂K(0;R) \ {A(R) ∪ B(R)},
where we have Dirichlet conditions on Fi for i ∈ {i1, . . . , ik} and Neumann conditions on Fi for
i /∈ {i1, . . . , ik}. Apart from the fact that we do not know the behaviour on C(R), the problem
can with some modifications be written as in (4).

Let w and w̃ be solutions. We put again f = w− w̃. Then f satisfies (5) with the modifications
that A ∪ B = ∂Ω is replaced by A(R) ∪ B(R) [⊆ ∂ΩR], and Fi is replaced by Fi ∩ K(0;R).

Choose as before g = f in Green’s first formula. Then∫
Ω(R)

‖ � ‖2dΩ =
∫

∂Ω(R)

f
∂f

∂n
dS =

∫
A(R)

f
∂f

∂n
dS +

∫
B(R)

f
∂f

∂b
dS +

∫
C(R)

f
∂f

∂n
dS.

Since f is zero on A(R) and B(R), this is reduced to∫
Ω(R)

‖ � f‖2dΩ =
∫

C(R)

f
∂f

∂n
dS,

which is not necessarily zero.

We notice that according to the additional conditions we have for x ∈ C(R) that

|f(x)| = |w(x) − w̃(x)| ≤ |w(x)| + ‖w̃(x)| ≤ 2C1

‖x‖ =
2C1

R
,

 Green’s identities
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and∣∣∣∣∂f

∂n

∣∣∣∣ ≤ ‖� f‖ = ‖ � w −�w̃‖ ≤ ‖ � w‖ + ‖ � w̃‖ ≤ 2C2

R2
,

and we obtain the estimates∣∣∣∣∣
∫

C(R)

f
∂f

∂n
dS

∣∣∣∣∣ ≤
∫

C(R)

|f | ·
∣∣∣∣∂f

∂n

∣∣∣∣ dS ≤
∫

C(R)

2C1

R
· 2C2

R2
dS

=
4C1C2

R3
areal(C(R)) ≤ 4C1C2

R3
area(∂K(0;R))

=
4V1C2

R3
· 4πR2 =

16πC1C2

R
→ 0 for R → +∞,

from which we conclude that∫
Ω

‖ � f‖2dΩ = lim
R→∞

∫
Ω(R)

‖ � f‖2dΩ = lim
R→+∞

∫
C(R)

f
∂f

∂n
dS = 0.

Notice that as ‖ � f‖2 ≥ 0, we can take this limit to find the value of the improper integral∫
Ω

‖ � f‖2dΩ = 0.

Since ‖�f‖2 ≥ 0 is continuous we conclude as above that �f = 0, i.e. f is a constant. Finally,
it follows from the boundary value that f(x) = 0 for x ∈ Ω, hence w(x) = w̃(x) in Ω, and we
have proved the uniqueness.

Remark 3. As mentioned above this is not a proof of the existence. Consider as an extreme
example the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2w = p, Poisson equation

∫
F

∂w

∂n
dS = Φ Neumann problem on F

‖x‖ · |w(x)| ≤ C1 for x ∈ Ω,

‖x‖2+ε‖ � w(x)‖ ≤ C2 for x ∈ Ω

Apart from the fact that the exponent 2 has been changed to 2 + ε of convergency reasons, this is
a special case of 2) above.

When we integrate Ω(R) and choose g = 1 in Green’s formula, we get that∫
Ω(R)

{1 · �2w + �1 · �f} dΩ =
∫

∂Ω(R)

∂w

∂n
dS,

which is reduced to∫
Ω(R)

p dΩ =
∫

C(R)

∂w

∂n
dS +

∫
F∩Ω(R)

∂w

∂n
dS.
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The former term on the right hand side is estimated by∣∣∣∣∣
∫

C(R)

∂w

∂n
dS

∣∣∣∣∣ ≤
∫

C(R)

‖ � w‖ dS ≤ C2

R2+ε
· 4πR2 =

4πC2

Rε
→ 0 for R → +∞,

and the latter term clearly converges towards

lim
R→+∞

∫
F∩Ω(R)

∂w

∂n
dS =

∫
F

∂w

∂n
dS = Φ,

and we get the compatibility condition∫
Ω

p dΩ = Φ,

proving that p and Φ are not independent of each other.

Notice that if we also have a Dirichlet condition and the improper integral
∫
Ω

p dΩ is convergent,
then the unknown flux through the Dirichlet boundary forces that the compatibility condition is
fulfilled. ♦

Remark 4. The example has been formulated from a physical point of view. In general, the
corresponding mathematical problem in the bounded case is described as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2w = p, in Ω0, Poisson,

w(x) = 0, in F0, Dirichlet,

w(x) = αi, in Fi for i ∈ {i1, . . . , ik}, Dirichlet,

∂w

∂n
= hi(x), in Fi for i /∈ {i1, . . . , ik}, Neumann,

or similarly
(

e.g.
∂w

∂n
= h0(x) in F0

)
.

If the boundary conditions are only of Neumann type, we must add a compatibility condition:∫
Ω

p dΩ =
∫

∂Ω

h dS,

where h(x) = hi(x) p̊a Fi.

Notice that we do not assume that w is constant on the Neumann boundaries.

Assuming that p and h are nice functions we can prove that we have both an existence and a
uniqueness theorem for the problem. For the pure Dirichlet problem the proof is classical known.
However, if just one Neumann boundary occurs, the proof becomes very difficult. One shall e.g.
apply Hopf’s maximum principle: In a connected domain Ω a non-constant harmonic function
w only attains its maximum values (if they exist) on the boundary ∂Ω, and we have at such a
maximum point

∂w

∂n
> 0. ♦

 Green’s identities



Download free books at BookBooN.com

Calculus 2c-10 

 

75  

Example 3.2 Let Ω be a domain in the space for a given non-constant function

g : Ω → [0,+∞[.

We shall find a function w, which satisfies

(6) �2w + λ g w = 0 on Ω◦, w = 0 on ∂Ω,

where λ is some constant. It can be proved that a nontrivial solution w in general only exists for some
values of λ, the so-called eigenvalues.

1. Show by applying Green’s first identity that the eigenvalues are positive.

Assume that w and W are solutions of (3.2) for different eigenvalues, such that

�2w + λ g w = 0

�2W + Λ g W = 0

⎫⎬
⎭ p̊a Ω◦,

w = 0

W = 0

⎫⎬
⎭ p̊a ∂Ω, λ �= Λ.

2. Show by applying Green’s second identity that∫
Ω

g(xw(x)W (x) dΩ = 0.

We say that the functions w and W are orthogonal, and g is called a weight function.

A Eigenvalue problem; Green’s first and second formulæ.

D Follow the guidelines.

I 1) Choose g = g = w in Green’s first formula. Then w = 0 on ∂Ω and

(7)
∫

Ω

{
w �2 w + ‖ � f‖2

}
dΩ =

∫
∂Ω

w
∂w

∂n
dS = 0.

We have by (6 that �2w = −λ g w, thus by a rearrangement of (7),∫
Ω

‖ � w‖2dΩ = −
∫

Ω

w �2 w dΩ = +λ

∫
Ω

g · w2 dΩ.

since w is a non-trivial solution, we must have that �w �= 0 (w is not a constant), and∫
Ω

‖ � w‖2 dΩ > 0 and
∫

Ω

g · w2 dΩ > 0,

hence

λ =

∫
Ω
‖ � w‖2 dΩ∫
Ω

g · w2 dΩ

is defined and positive. It follows that every eigenvalue λ is positive.
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2) Let w and W be non-trivial solutions for different eigenvalues λ and Λ. Then apply Green’s
second identity, using that w and W are zero on ∂Ω,∫

Ω

{
w �2 W − W �2 w

}
dΩ =

∫
∂Ω

{
w

∂W

∂n
− W

∂w

∂n

}
dS = 0.

Hence,∫
Ω

w �2 W dΩ −
∫

Ω

W �2 w dΩ = 0.

Since

�2W = −Λ g W og �2 w = −λ g w,

it follows by insertion that

0 = −
∫

Ω

w Λ g W dΩ +
∫

Ω

W λg w dΩ = (λ − Λ)
∫

Ω

g w W dΩ.

As λ �= Λ, this implies∫
Ω

g(x)w(x)W (x) dΩ = 0

as requested.

 Green’s identities
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Example 3.3 Let m be a constant. consider a function f : R
3 → R, which satisfies

f(τ x) = τm f(x)

for every x and for those values of τ , for which τm is defined. We say that such a function is
homogeneous of degree m.

1) Show that if f is also differentiable, then

x · �f(x) = mf(x).

2) Show that if f furthermore is harmonic, then∫
K(x;a)

‖ � f‖2 dΩ =
m

a

∫
∂K(0;a)

f2 dS.

A Homogeneous functions of degree m.

D The first question follows by differentiation of the definition with respect to τ . In the second
question we apply Green’s first identity.

I 1) When we differentiate f(τ x) = τm f(x) with respect to τ , we get

mτm−1 f(x) =
d

dτ
f(τ x) = x · �f(τ x).

Now, put τ = 1. Then

x · �f(x) = mf(x).

2) By Green’s first identity,∫
Ω

(g �2 f + �g · �f) dΩ =
∫

∂Ω

g
∂f

∂n
dS.

Choose Ω = K(0; a) and g0f . Since f is harmonic, �2f = 0, it follows that∫
K(0;a)

‖ � f‖2 dΩ =
∫

∂K(0;a)

f
∂f

∂n
dS.

We have on the sphere that x = an, hence by 1),

∂f

∂n
= n · �f(x) =

1
a

x · �f(x) =
m

a
f(x).

∫
K(0;a)

‖ � f‖2 dΩ =
m

a

∫
∂K(0;a)

f2 dS.

Remark. We strongly exploit that Ω is a ball of centrum 0. ♦
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4 Curvilinear coordinates

Example 4.1 Let Pn(x, y, z) be a homogeneous polynomial of degree n. Then in spherical coordinates,

∂Pn

∂r
=

n

r
Pn, r �= 0.

1) Prove this by first noticing that we can write

Rn(x, y, z) = rn g(θ, ϕ).

2) Show that if Pn is a harmonic function, then the function

Qn(x, y, z) =
Pn(x, y, z)

r2n+1
, r �= 0,

is also harmonic.

A Homogeneous polynomial as an harmonic function in spherical coordinates.

D Follow the guidelines.

I 1) We have in spherical coordinates,

xky�zm = rk g1(θ, ϕ) · r� g2(θ, ϕ) · rm g3(θ, ϕ) = rk+�+mgk,�,m(θ, ϕ).

In an homogeneous polynomial all such terms satisfy

k + � + m = n (= the degree),

thus by addition,

Pn(x, y, z) = rn g(θ, ϕ).

Hence for r �= 0,

∂Pn

∂r
= n rn−1 g(θ, ϕ) =

n

r
rn g(θ, ϕ) =

n

r
Pn.

2) From

�r =
1
r

x, r �= 0,

follows that

� (rα) = α rα−1 � r = α rα−2 x,

thus

�2 (rα) = � · � (rα) = � · {α rα−2 x
}

= α(α − 2)rα−4 x · x + 3α rα−2

= α(α − 2) rα−4 r2 + 3α rα−2 = α(α + 1)rα−2.

Let Pn be an homogeneous polynomial of degree n, which is also harmonic, i.e. �2Pn = 0, and
let

Qn(x, y, z) =
Pn(x, y, z)

r2n+1
, r �= 0.
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Choose α = −2n − 1. Then we get for r �= 0 that

�2Qn = � · � (
Pn · r−2n−1

)
= � · {�Pn · r−2n−1 + Pn � (

r−2n−1
)}

= �2Pn · r−2n−1 + 2 � Pn · � (
r−2n−1

)
+ Pn · �2

(
r−2n−1

)
= 2 � Pn · x (−2n − 1)r−2n−3 + Pn · (−2n − 1)(−2n)r−2n−3

= 2(2n + 1)r−2n−3 {−� Pn · x + nPn} .

If k + � + m = n, then

�(xky�zm) · (x, y, z) =
(
k xk−1, � y�−1,m zm−1

) · (x, y, z)

= (k + � + m)xky�zm = nxky�zm.

By adding all such terms we get

�Pn · x = nPn,

hence by insertion �2Qn = 0, and we have proved that Qn is harmonic.

Remark. In the open octant, where x > 0, y > 0 and z > 0, the proof is carried over
unchanged, even if k, �, m and n are not integers. Another immediate extension is to negative
integers, et.. ♦

Example 4.2 We introduce the so-called spheroidal coordinates (η, ϑ, ϕ), where ϕ has the usual sense,
by the following equations expressed in the rectangular coordinates,

x = a sinh η sin ϑ cos ϕ, y = a sinh η sinϑ sin ϕ, z = a cosh η cos ϑ.

1) Describe the coordinate surfaces and find the intervals of η and ϑ.

2) Show that (η, ϑ, ϕ) are orthogonal.

3) Find the metric coefficients.

4) Show that the function f(η, ϑ, ϕ) = ln tanh
(η

2

)
is a solution of Laplace’s equation.

A Spheroidal coordinates.

D Apply the description on any given textbook.

I 1) Let η �= 0 be fixed. Then it follows from

x2 + y2 = a2 sinh2 η sin2 ϑ, z2 = a2 cosh2 η cos2 ϑ,

that

x2 + y2

(a sinh η)2
+

z2

(a cosh η)2
= 1.

This equation describes an ellipsoidal surface of the half axes a| sinh η|, a| sinh η| and a cosh η.
Notice that we obtain the same ellipsoid, when η is replaced by −η, and with the exception of
the points on the segment [−a, a] of the Z-axis, every point in space lies on precisely one such
ellipsoidal surface, where η > 0.
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Roughly speaking, this means that the ellipsoidal surface is inflated continuously like a balloon,
when the parameter η > 0 increases.

If η = 0, then x = 0, y = 0 and z = a cos ϑ, which describes the segment [−a, a] on the Z-axis
run through once if ϑ ∈ [0, π].

We hereby obtain the level surfaces η > 0 where η = 0 is the generated case, and the η-interval
is [0,+∞[.

It also follows from the above that ϑ ∈ [0, π].

Now notice that if ϑ = 0, then x = 0, y = 0 and z = a cosh η, which for η ≥ 0 describes the
half line [a,+∞[ on the Z-axis run through once.

If ϑ ∈
]
0,

π

2

[
is fixed, then z > 0, and we get by eliminating η and ϕ,

(8)
z2

(a cos ϑ)2
− x2 + y2

a sin ϑ)2
= 1,

 Curvilinear coordinates
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–2
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1

2

–2 –1 1 2

Figure 11: The meridian curves extended to the whole plane for a = 1.

which describes the upper net of an hyperboloid of two nets and “half axes” a| sin ϑ|, a| sin ϑ|
and a cos ϑ, where we have used absolute values to support the following, although this is not
necessary.

If ϑ ∈
]π

2
, π
[

is fixed, then z < 0. When we eliminate η and ϕ we again obtain (8), and we get
the corresponding lower net as level surfaces.

If ϑ =
π

2
, then

x = a sinh η cos ϕ, y = a sinh η sin ϕ, z = 0,

which (put � = a sinh η) runs through the plane z = 0, so this is the level surface of ϑ =
π

2
.

If ϑ = π, then x = 0, y = 0 and z = −a cosh η, which describes the half line ] −∞,−a[ on the
Z-axis.

By a continuity argument it follows that every point in space lies precisely on one of these level
surfaces (degenerated for ϑ = 0 and ϑ = π).

If ϕ ∈ [0, 2π[ is kept fixed, we get a meridian half plane, when η ≥ 0 and ϑ ∈ [0, π] vary.

As a conclusion we have described the level surfaces,and the intervals are

η ∈ [0,+∞[, ϑ ∈ [0, π], ϕ ∈ [0, 2π[.

2) Clearly, the meridian half planes are orthogonal to the other level surfaces.

Until 40 years ago it was even known in high school that the hyperbolic system and the
elliptic system are orthogonal. This may perhaps no longer be the case. Instead we get by a
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computation

(9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂r
∂η

= a(cosh η sin ϑ cos ϕ, cosh η sin ϑ sin ϕ, sinh η cos ϑ),

∂r
∂ϑ

= a(sinh η cos ϑ cos ϕ, sinh η cos ϑ sinϕ,− cosh η sinϑ),

∂r
∂ϕ

= a(− sinh η sin ϑ sinϕ, sinh η sin ϑ cos ϕ, 0).

Hence
∂r
∂η

· ∂r
∂ϑ

= a2{sinh η cosh η sin ϑ cos ϑ(cos2 ϕ + sin2 ϕ) − sinh η cosh η sin ϑ cos ϑ}
= 0,

∂r
∂η

· ∂r
∂ϕ

= a2{− sinh η cosh η sin2 ϑ sinϕ cos ϕ + sinh η cosh η sin2 ϑ sin ϕ cos ϕ}
= 0,

∂r
∂η

· ∂r
∂ϕ

= a2{− sinh2 η sinϑ cos ϑ sin ϕ cos ϕ + sinh2 η sin ϑ cos ϑ sinϕ cos ϕ}
= 0.

We have now proved that (η, ϑ, ϕ) are orthogonal.

3) It follows from (9) that

h2
1 =

∂r
∂η

· ∂r
∂η

= a2
{
cosh2 η sin2 ϑ cos2 ϕ + cosh2 η sin@ ϑ sin2 ϕ + sinh2 η cos2 ϑ

}
= a2

{
cosh2 η sin2 ϑ + sinh2 η cos2 ϑ cos2 ϑ

}
= a2

{
sinh2η + sin2 ϑ

}
= a2

{
cosh2 η − cos2 ϑ

}
,

h2
2 =

∂r
∂ϑ

· ∂r
∂ϑ

= a2
{
sinh2 η cos2 ϑ cos2 ϕ + sinh2 η cos2 ϑ sin2 ϕ + cosh2 η sin2 ϑ

}
= a2

{
sinh2 η cos2 ϑ + cosh2 η sin2 ϑ

}
= h2

1 = a2
{
sinh2 η + sin2 ϑ

}
= a2

{
cosh2 η − cos2 ϑ

}
,

h2
3 =

∂r
∂ϕ

· ∂r
∂ϕ

= a2
{
sinh2 η sin2 ϑ sin2 ϕ + sinh2 η sin2 ϑ cos2 ϕ

}
= a2 sinh2 η sinh2 ϑ.

For η ≥ 0 and 0 ≤ ϑ ≤ π the metric coefficients are

h1 = h2 = a

√
sinh2 η + sin2 ϑ and h3 = a sinh η sin ϑ.
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4) Since f(η, ϑ, ϕ) = ln tanh
(η

2

)
is independent of ϑ and ϕ, we have

�f =
1
h1

∂f

∂η
a1 +

1
h2

∂f

∂ϑ
a2 +

1
h3

∂f

∂ϕ
a3 =

1
h1

∂f

∂η
a1 =

1
h1

· 1
sinh η

a1,

because

∂f

∂η
=

1
tanh

(
η
2

) · 1
cosh2

(
η
2

) · 1
2

=
1

2 sinh
(

η
2

)
cosh

(
η
2

) =
1

sinh η
.

Hence, the coordinates are with respect to the new system,

(V1, V2, V3) =
(

1
h1 sinh η

, 0 , 0
)

,

thus

�2f = � · �f

=
1

h1h2h3

{
∂

∂η
(h2h3V1) +

∂

∂ϑ
(h3h1V2) +

∂

∂ϕ
(h1h2V3)

}

=
1

h1h2h3

∂

∂η

(
h2h3

h1
· 1
sinh η

)

=
1

h1h2h3

∂

∂η

(
a sinh η sinϑ

sinh η

)
=

1
h1h2h3

∂

∂η
sin ϑ = 0,

and the claim is proved.

Remark. By a similar argument we see that

g(η, ϑ, ϕ) =
1
2

ln
(

1 − cos ϑ

1 + cos ϑ

)
, 0 < ϑ < π,

satisfies Laplace’s equation. ♦

Example 4.3 Let (u, v, z) be an orthogonal cylinder coordinate system, the metric coefficients of
which satisfy hu = hv. Prove that the functions

F (u, v, z) = α + βu, G(u, v, z) = eγu cos(γv),

α, β, γ being known constants, satisfy Laplace’s equation.
Find more similar solutions of Laplace’s equation.

A Orthogonal cylinder coordinate system. Laplace’s equation.

D Apply the Laplace operator.

I Since the cylinder coordinate system is orthogonal, we have hz = 1. When we set up the Laplace
operator it then becomes a question of making the right identificcations:

h1 = h2 = hu = hv and h3 = 1,
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thus

�2f =
1

h1h2h3

{
∂

∂u

(
h2h3

h1

∂f

∂u

)
+

∂

∂v

(
h3h1

h2

∂f

∂v

)
+

∂

∂z

(
h1h2

h3

∂f

∂z

)}

=
1
h2

u

{
∂

∂u

(
hu

hu

∂f

∂u
+

hu

hu

∂f

∂v

)
+

∂

∂z

(
h2

u

1
∂f

∂z

)}

=
1
h2

u

{
∂2f

∂u2
+

∂2f

∂v2
+

∂

∂z

(
h2

u

∂f

∂z

)}
.

Any function, which only depends on u and v, and which is harmonic in these variables, must
satisfy the Laplace equation. This is trivial for F (u, v, z), which is a polynomial of degree 1.
Furthermore,

∂2G

∂u2
+

∂2G

∂v2
= γ2G(u, v, z) − γ2G(u, v, z) = 0,

so the claim also holds for G(u, v, z).

As mentioned above, any harmonic function in (u, v) and independent of z satisfies Laplace’s
equation.
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Remark 1. With the knowledge of Complex Function Theory one obtains the harmonic functions
by taking the real part or the imaginary part of an analytic function. ♦

Remark 2. If we do not know hu = hv, it is not possible to find the solutions of Laplace’s equation
which also depend on z. ♦

Example 4.4 Assume that the constants α, β satisfy β > α > 0. Consider for fixed (x, y, z), where
xyz �= 0, the auxiliary function

F (t) = x2(t−α)(t−β)+y2t(t−β)+z2t(t−α)−t(t−α)(t−β), t ∈ R.

1. Find F (0), F (α) and F (β). Then sketch the graph of F and show that the equation F (t) = 0 has
three different roots u, v, w, which satisfy

0 < u < α < v < β < w.

Hence, for every (x, y, z) with xyz �= 0 we obtain a set (u, v, w). These are called the ellipsoidal
coordinates of the point with respect to the constants α and β.

2. Show that the coordinate surfaces (in the (x, y, z)-space) are parts of the following surfaces:

• ellipsoids for w constant,

• hyperboloids with 1 net for v constant, and

• hyperboloids with 2 nets for u constant.

3. Show that

F (t) = (u − t)(v − t)(w − t),

and then derive the expressions

x2 =
uvw

αβ
, y2 =

(α − u)(v − α)(w − α)
α(β − α)

, z2 =
(β − u)(β − v)(w − β)

β(β − α)
.

Thus, the transformation to the new coordinates is not injective.

4. Show that the new coordinate system is orthogonal.

5. Show that the metric coefficients are given by

hu =
1
2

√
(v − u)(w − u)
u(α − u)(β − u)

,

hv =
1
2

√
(v − u)(w − v)
v(v − α)(β − v)

,

hw =
1
2

√
(w − v)(w − u)

w(w − α)(w − β)
.
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–1
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Figure 12: the graph of F (t), when x = 1, y = 0, 5, z = 0, 8 and α = 1, β = 2.

A Curvilinear coordinates.

D Apply the theory.

I 1) Clearly, F (t) is a polynomial of third degree and

F (0) = αβx2 > 0, F (α) = −α(β − α)y2 < 0, F (β) = β(β − α)z2 > 0.

Also,

lim
t→−∞F (t) = +∞ og lim

t→+∞F (t) = −∞.

Since F (t) is continuous we conclude from the variation of the signs, cf. the figure, that there
are three different roots u, v, w, which satisfy

0 < u < α < v < β < w.

For each (x, y, z) where xyz �= 0 we have precisely one such set (u, v, w).

Remark. It follows that (±x,±y,±z) with xyz �= 0 for each of the eight possible choices of
the signs give the same set (u, v, w), so the transformation is not injective, cf. 3). ♦

2) a) When t = w, we get F (w) = 0, hence by a rearrangement

(w − α)(w − β)x2 + w(w − β)y2 + w(w − α)z2 = w(w − α)(w − β).

From w > β > α > 0 follows that all coefficients are positive, hence we see by a continuous
extension to the coordinate planes x = 0, y = 0 and z = 0 that the coordinate surface is an
ellipsoid.

b) Similarly, we get for t = v that F (v) = 0. As 0 < α < v < β, it follows by a rearrangement
that

(v − α)(v − β)x2 + v(v − β)y2 + v(v − α)z2 = v(v − α)(v − β).

Hence by a change of signs, such that all terms are positive, with the exception of −v(v−α),

(v − α)(β − v)x2 + v(β − v)y2 − v(v − α)z2 = v(v − α)(β − v),

corresponding to that (the continuous extension of) the coordinate surface is an hyperboloid
with 1 net.
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c) As t = u gives F (u) = 0, where 0 < u < α < β, it follows by a rearrangement that

(u − α)(u − β)x2 + u(u − β)y2 + u(8 − α)z2 = u(u − α)(u − β),

corresponding to that (the continuous extension of) the coordinate surface is an hyperboloid
of 2 nets. (The right hand side is positive and the coefficient of x2 is positive, while the
coefficients of y2 and z2 are both negative).

3) Since F (t) is a polynomial of degree 3 with the coefficient −1 of t3, and if u, v, w are the three
roots, then

F (t) = −(t − u)(t − v)(t − w) = (u − t)(v − t)(w − t).

It follows from 1) and this alternative description that

F (0) = αβx2 = uvw, hence x2 =
uvw

αβ
,

and

F (α) = −α(β − α)y2 = (u − α)(v − α)(w − α),

hence

y2 =
(α − u)(v − α)(w − α)

α(β − α)
,

and

F (β) = β(β − α)z2 = (u − β)(v − β)(w − β),

and thus

z2 =
(u − β)(v − β)(w − β)

β(β − α)
=

(β − u)(β − v)(w − β)
β(β − α)

.

4) It follows from the results of 3) that

∂(x2)
∂u

= 2x
∂x

∂u
=

vw

αβ
,

thus

∂x

∂u
=

1
2

sign(x)

√
αβ

uvw
· vw

αβ
=

sign(x)
2
√

αβ

√
vw

u
.

Due to the symmetry we can interchange the letters, which gives

∂x

∂v
=

sign(x)
2
√

αβ

√
uw

v
,

∂x

∂w
=

sign(x)
2
√

αβ

√
uv

w
.

Furthermore,

∂(y2)
∂u

= 2y
∂y

∂u
= − (v − α)(w − α)

α(β − α)
,
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hence

∂y

∂u
= − sign(y)

2
√

α(β − α)

√
(v − α)(w − α)

α − u
,

and similarly (NB: change of sign!)

∂y

∂v
=

sign(y)
2
√

α(β − α)

√
(α − u)(w − α)

v − α
,

∂y

∂w
=

sign(y)
2
√

α(β − α)

√
(α − u)(v − α)

w − α
.
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Finally, we get in exactly the same way,

∂z

∂u
= − sign(z)

2
√

β(β − α)

√
(β − v)(w − β)

β − u
,

∂z

∂v
= − sign(z)

2
√

β(β − α)

√
(β − u)(w − β)

β − v
,

∂z

∂w
=

sign(z)
2
√

β(β − α)

√
(β − u)(β − v)

w − β
.

According to the theory,

dx = huaudu + hvavdv + hwawdw,

where it follows from the above that

huau =
(

∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
=

1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sign(x)√
αβ

√
vw

u

− sign(y)√
α(β − α)

√
(v − α)(w − α)

α − u

− sign(z)√
β(β − α)

√
(β − v)(w − β)

β − u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

hvav =
(

∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
=

1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sign(x)√
αβ

√
uw

v

sign(y)√
α(β − α)

√
(α − u)(w − α)

v − α

− sign(z)√
β(β − α)

√
(β − u)(w − β)

β − v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

hwaw =
(

∂x

∂w
,

∂y

∂w
,

∂z

∂w

)
=

1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sign(x)√
αβ

√
uv

w

sign(y)√
α(β − α)

√
(α − u)(v − α)

w − α

sign(z)√
β(β − α)

√
(β − u)(β − v)

w − β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus

huau · hvav =
1
4

{
w

αβ
− w − α

α(β − α)
+

w − β

β(β − α)

}

=
1
4

{
w · β − α − β + α

αβ(β − α)
+

α

α(β − α)
− β

β(β − α)

}
= 0.(10)
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huau · hwaw =
1
4

{
v

αβ
− v − α

α(β − α)
+

v − β

β(β − α)

}
= 0,

hvav · hwaw =
1
4

{
u

αβ
− u − α

α(β − α)
+

u − β

β(β − α)

)
= 0,

where we in the latter two calculations have used that they have the same structure as in (10),
only with v or u instead of w.

Since huhvhw �= 0, we conclude from the above that

au · av = 0, au · aw = 0, av · aw = 0,

and the new coordinate system is orthogonal.

5) Finally, we derive from the results of 4) that we get (11), i.e.

h2
u =

∥∥∥∥
(

∂x

∂u
,
∂y

∂u
,
∂z

∂u

)∥∥∥∥
2

= huau · huau

=
1
4

{
1

αβ

vw

u
+

1
α(β − α)

(v − α)(w − α)
α − u

+
1

β(β − α)
(β − v)(w − β)

β − u

}

=
1
4

1
u(α−u)(β−u)

{
vw

αβ
(α−u)(β−u)+

(v−α)(w−α)
α(β−α)

u(β−u)+
(β−v)(w−β)

β(β−α)
u(α−u)

}
.

Here

vw

αβ
(α − u)(β − u) =

u2vw

αβ
− α + β

αβ
uvw + vw,

(v−α)(w−α)
α(β−α)

u(β−u) = − u2vw

α(β − α)
+

β

α(β − α)
uvw − α(v+w)u(β−u)

α(β − α)
+

α2u(β−u)
α(β − α)

,

(β − v)(w − β)
β(β − α)

· u(α − u) =
u2vw

β(β − α)
− α

β(β − α)
uvw +

β(v+w)u(α−u)
β(β − α)

− β2u(α−u)
β(β − α)

,

so the latter factor {· · · } of (11) can now be written as

u2vw

{
1

αβ
− 1

α(β − α)
+

1
β(β − α)

}
+ uvw

{
−α + β

αβ
+

β

α(β − α)
− α

β(β − α)

}

+vw +
u(v + w)

β − α
{−(β − u) + (α − u)} + u

{
αβ

β − α
− αβ

β − α

}
+ u2

{
− α

β − α
+

β

β − α

}

= u2vw

{
1

αβ
− β

αβ(β − α)
+

α

αβ(β − α)

}
+ uvw

{
−α + β

αβ
+

β2 − α2

αβ(β − α)

}
+ vw

+
u(v + w)

β − α
(α − β) + u2

= u2 − (v + w)u + vw = (u − v)(u − w) = (v − u)(w − u),

which by insertion into (11) gives

h2
u =

1
4
· (v − u)(w − u)
u(α − u)(β − u)
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and we have proved that

0 < hu =
1
2

√
(v − u)(w − u)
u(α − u)(β − u)

.

By comparison of the expressions of huau, hvav and hwaw, we see that there is some form of
symmetry:
Put u into the denominator of huau; similarly, put v in the denominator of hvav, and put w into
the denominator of hwaw. Thus, we almost get the expressions of hv and hw by interchanging
the letters. The only additional complication is that all the factors shall be positive. Taking
also this into account we finally get

hv =
1
2

√
(v − u)(w − v)
v(v − α)(β − v)

og hw =
1
2

√
(w − v)(w − u)

w(w − α)(w − β)
.

Alternatively, just repeat the computations above. One immediately gets (11) by inter-
changing the letters u, v, w, so in the remaining part of the argument we shall only identify
the coefficients (functions of α and β) in a polynomial in u, v, w.

Example 4.5 Here we construct a variant of the spherical coordinates (r, θ, ϕ) by putting

r = a eξ, ξ ∈ R,

while θ and ϕ are kept as previously. Clearly, the new system (ξ, θ, ϕ) is orthogonal. Find its metric
coefficients hξ, hθ, hϕ.

A Curvilinear coordinates.

D Write the rectangular coordinates in the new ones via the usual spherical coordinates, and then
compute the metric coefficients.

I It is well-known that

x = r sin θ cos ϕ = a eξ sin θ cos ϕ,

y = r sin θ sin ϕ = a eξ sin θ sin ϕ,

z = r cos θ = a eξ cos θ.

Hence

∂r
∂ξ

= r,

∂r
∂θ

= a eξ(cos θ cos ϕ, cos θ sin ϕ,− sin θ),

∂r
∂ϕ

= a eξ sin θ(− sin ϕ, cos ϕ, 0),

 Curvilinear coordinates



Download free books at BookBooN.com

Calculus 2c-10 

 

92  

and thus

hξ =
∥∥∥∥∂r

∂ξ

∥∥∥∥ = ‖r‖ = a eξ,

hθ =
∥∥∥∥∂r

∂θ

∥∥∥∥ = a eξ,

hϕ =
∥∥∥∥ ∂r

∂ϕ

∥∥∥∥ = a eξ sin θ.

Example 4.6 The so-called six ball coordinates (u, v, w) are introduced in the following way:

u =
x

r2
, v =

y

r2
, w =

z

r2
.

1) Describe the coordinate surfaces.

2) Find u2 + v2 + w2, and then express (x, y, z) by means of (u, v, w).

3) Show that the coordinate system (u, v, w) is orthogonal.

4) Compute the metric coefficients hu, hv, hw.

A Curvilinear coordinates in R
3 \ {(0, 0, 0)}.

D Identify each concept. We shall everywhere not consider the point (x, y, z) = (0, 0, 0).

I 1) When u = 0, we get x = 0 (a plane).
When u �= 0 is constant, then

0 = r2 − x

u
= x2 − 2 · 1

2u
· x +

1
4u2

+ y2 + z2 − 1
4u2

,

hence(
x − 1

2u

)2

+ y2 + z2 =
(

1
|2u|

)2

.

The coordinate surface corresponding to u �= 0 constant is the sphere of centrum
(

1
2u

, 0 , 0
)

and radius
1

|2u| .

Similarly, we get for v = 0 the plane y = 0, and for v �= 0 constant we get

x2 +
(

y − 1
2v

)2

+ z2 =
(

1
|2v|

)2

,

i.e. the sphere of centrum
(

0 ,
1
2v

, 0
)

and radius
1

|2v| .
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Finally, w = 0 corresponds to the plane z = 0, and when w �= 0 is a constant we get

x2 + y2 +
(

z − 1
2w

)2

=
(

1
|2w|

)2

,

thus the sphere of centrum
(

0 , 0 ,
1

2w

)
and radius

1
|2w| .

2) A small computation gives

u2 + v2 + w2 =
1
r4

(
x2 + y2 + z2

)
=

r2

r4
=

1
r2

,

thus

r2 =
1

u2 + v2 + w2
.

Then

x = r2u =
u

u2 + v2 + w2
, y = r2v =

v

u2 + v2 + w2
, z = r2w =

w

u2 + v2 + w2
.

 Curvilinear coordinates

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/pdf/346359/93


Download free books at BookBooN.com

Calculus 2c-10 

 

94  

3) It follows that

∂r
∂u

=
(

1
u2 + v2 + w2

− 2u2

(u2 + v2 + w2)2
,

−2uv

(u2 + v2 + w2)2
,

−2uw

(u2 + v2 + w2)

)

=
1

(u2 + v2 + w2)2
(−u2 + v2 + w2,−2uv,−2uw

)
,

and similarly,

∂r
∂v

=
1

(u2 + v2 + w2)2
(−2uv, u2 − v2 + w2,−2vw),

∂r
∂w

=
1

(u2 + v2 + w2)2
(−2uw,−2vw, u2 + v2 − w2).

Hence

(u2 + v2 + w2)4
∂r
∂u

· ∂r
∂v

= −2uv(−u2 + v2 + w2) − 2uv(u2 − v2 + w2) + 4uvw2

= 2uv
{−2w2 + 2w2

}
= 0,

proving that
∂r
∂u

and
∂r
∂v

are orthogonal to each other.

We conclude by the symmetry that
∂r
∂u

,
∂r
∂v

and
∂r
∂w

are pairwise orthogonal, and we have

proved that (u, v, w) is orthogonal.

4) According to the above,

h2
u =

∥∥∥∥ ∂r
∂u

∥∥∥∥
2

=
1

(u2+v2+w2)4
{(−u2+v2+w2

)2
+4u2v2+4u2w2

}

=
1

(u2+v2+w2)4
{
(u2)2−2u2(v2+w2)+(v2+w2)+4u2(v2+w2)

}
=

1
(u2 + v2 + w2)4

(u2 + v2 + w2)2,

i.e.

h2
u =

1
(u2 + v2 + w2)2

and hence

hu =
1

u2 + v2 + w2
.

Then by the symmetry

hv =
1

u2 + v2 + w2
and hw =

1
u2 + v2 + w2

.
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Example 4.7 We introduce a set of curvilinear coordinates (ξ, η, ϕ) by

x = ξη cos ϕ, y = ξη sin ϕ, z =
1
2
(
ξ2 − η2

)
,

0 ≤ ξ < +∞, 0 ≤ η < +∞, 0 ≤ ϕ ≤ 2π.

1) Show that this defines a rotation coordinate system.

2) Describe the coordinate surfaces, in particular the degenerated ones, ξ = 0 and η = 0. Sketch the
meridian half plane.

3) Show that the coordinate system (ξ, η, ϕ) is orthogonal.

4) Compute the metric coefficients hξ, hη, hϕ.

A Curvilinear coordinates.

D Identify each concept. Apply the theory concerning the relevant formulæ.

I 1) First, ϕ is eliminated by

x2 + y2 = (ξη)2,

and we see that z does not depend on ϕ at all, thus (ξ, η, ϕ) is a rotation coordinate system.

2) When ξ = 0, then x = y = 0 and z = −1
2

η2, hence the “coordinate surface” degenerates into
the negative Z-axis.

Similarly, when η = 0 we get x = y = 0 and z =
1
2

ξ2, thus the “coordinate surface” degenerates
to the positive Z-axis.

Assume e.g. that ξ �= 0 is constant. Then

x2 + y2 = ξ2η2, dvs. η2 =
1
ξ2

(x2 + y2),

hence by insertion

z =
1
2

(ξ2 − η2) =
1
2

ξ2 − 1
2ξ2

(x2 + y2).

This is the equation of a paraboloid of revolution of vertex
1
2

ξ2 and with the Z-axis as the
axis of revolution.

Assume that η �= 0 is constant. Then ξ2 =
1
η2

(x2 + y2), thus

z =
1
2

(ξ2 − η2) =
1

2η2
(x2 + y2) − 1

2
η2,

which is the equation of another paraboloid of revolution of vertex −1
2

η2.

For ϕ constant we obtain a plane through the Z-axis with e.g. the normal vector (− sin ϕ, cos ϕ, 0).
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3) We first compute

∂r
∂ξ

= (η cos ϕ, η sin ϕ, xi),

∂r
∂η

= (ξ cos ϕ, ξ sin ϕ,−η),

∂r
∂ϕ

= (−ξη sin ϕ, ξη cos ϕ, 0) = ξη(− sin ϕ, cos ϕ, 0).

We derive from these formulæ that
∂r
∂ξ

· ∂r
∂η

= ξη cos2 ϕ + ξη sin2 ϕ − ξη = 0

∂r
∂ξ

· ∂r
∂ϕ

= ξη2(− sin ϕ cos ϕ + sinϕ cos ϕ) + 0 = 0,

∂r
∂η

· ∂r
∂ϕ

= ξ2η(− sin ϕ cos ϕ + sinϕ cos ϕ) + 0 = 0,

and the coordinate system (u, v, w) is orthogonal.

4) Finally,

hξ =
∥∥∥∥∂r

∂ξ

∥∥∥∥ =
√

η2 + ξ2 =
√

ξ2 + η2,

hη =
∥∥∥∥∂r

∂η

∥∥∥∥ =
√

ξ2 + η2,

hz = ξη.
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5 Examples from Electromagnetism

Example 5.1 We consider the following equations for the stationary magnetic field,

�× H = H, B = �× A,

where B is the magnetic flux density, H is the magnetic field intensity, A a magnetic vector potential,
and J the electric flow density; the latter is only different from the zero vector in a bounded part of
the space. We shall also assume that

r2‖H‖, r2‖B‖, r1‖A‖ bounded and B · H ≥ 0.

One can prove that we can attribute to the field the energy

WM =
∫

1
2

B · H dΩ,

where we integrate over the whole space. Show by partial integration that this integral is convergent
and that

WM =
∫

1
2

J · A dΩ,

where we shall only integrate over the bounded part of the space, in which J �= 0.
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A Nabla calculus and Electromagnetism.

D Show that
∫ 1

2
B · H dΩ and

∫ 1
2

A · J dΩ both exist. Then reduce
1
2

B · H − 1
2

A · J. (This dirty

trick is equivalent to a partial integration).

I Formally, we must assume that all functions and vector functions are of class C1 in all of R
3 and

that they are in particular finite in 0. If J = 0 for r ≥ R0, then∣∣∣∣
∫

1
2

A · J dΩ
∣∣∣∣ ≤ 1

2

∫
K(0;R0)

‖A‖ · ‖J‖ dΩ ≤ 1
2
· 4πR3

3
max

‖x‖≤R0

‖A(x)‖ · max
‖x≤R0

‖J(x)‖ < +∞.

By using spherical coordinates we get for R > 1,∣∣∣∣∣
∫

K(0;R)\K(0;1)

1
2

B · H dΩ

∣∣∣∣∣ ≤ 1
2

∫
K(0;R)\K(0;1)

r2‖B‖ · r2‖H‖ · 1
r4

dΩ

≤ C

∫ R

1

1
r4

r2 dr = C

(
1 − 1

R

)
< C,

where C is independent of R, and it follows that the integral is convergent.

It follows from the definitions that

1
2

B · H − 1
2

A · J =
1
2

(�× A) · H − 1
2

A · (�× H) =
1
2

� ·(A × H),

thus by Gauß’s theorem∫
K(0;R)

1
2

B · H dΩ −
∫

K(0;R)

1
2

A · J dΩ(11)

=
1
2

∫
K(0;R)

� · (A × H) dΩ =
∫

∂K(0;R)

n · (A ×H) dS.

Here we have the estimate∣∣∣∣∣
∫

∂K(0;R)

n · (A × H) dS

∣∣∣∣∣ ≤
∫

∂K(0;R)

R‖A‖ · R2‖H‖
R3

dS

≤ C · 1
R3

areal(∂K(0;R)) = C1 · R2

R3
= C1 · 1

R
→ 0 for R → +∞.

Thus by taking the limit R → +∞ we get from (11) that∫
R3

1
2

B · H dΩ −
∫

R3

1
2

A · J dΩ = 0,

hence by a rearrangement,

WM =
∫

R3

1
2

B · H dΩ =
∫

R3

1
2

A · J dΩ =
∫

K(0;R)

1
2

A · J dΩ

as required
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Example 5.2 We have for a material which is not in an electric sense an ideal isolator,

� · D = �̃, � · J +
∂�̃

∂t
= 0, D = αJ,

where D is the electric flux density, J is the flow density, and �̃ is the charge density, while α is
a scalar field, which describes the electric properties of the material, and t is the time. We further
assume that we are in a stationary case and that we are given a current distribution, so J is a known
vector field.
Find an expression of �̃.

A Nabla calculus and Electromagnetism.

D Analyze the equations, when J and α are given.

I We first derive that

�̃ = � · D = � · (αJ) = (�α) · J + α � ·J.
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Since we are in the stationary case, we have

∂�̃

∂t
= 0,

hence

� · J +
∂�̃

∂t
= 0

implies that � · J = 0. Finally, by insertion,

�̃ = (�α) · J.

Example 5.3 Considering potentials it can be proved that the electric field intensity E and the mag-
netic flux density B can be derived from a scalar potential V and a vector potential A in the following
way:

B = �× A, E = −∂A
∂t

−�V.

We also have equations of the same form with another set of potentials (Ã, Ṽ ), provided that

Ṽ = V − ∂g

∂t
, Ã + �g,

where g is a scalar field. We notice that the potentials are not uniquely determined, so it is natural to
set up an extra condition on the potentials. One often applies the so-called Lorentz condition

� · A +
∂V

∂t
= 0.

1. Derive the differential equation which the scalar field g must fulfil if one from any given set of
potentials (Ã, Ṽ ) can create a set of potentials (A, V ), which also satisfies the Lorentz condition.

It turns up that one can solve this differential equation. We therefore assume in the following that the
Lorentz condition is satisfied, and then consider the vector field

Z(x, t) =
∫ t

t0

A(x, τ) dτ,

where t0 is some constant.

2. Show that if we put V = −� ·Z, then the Lorentz condition is fulfilled.

3. Then express the electromagnetic fields E and B by means of the vector field Z.
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A Set of potentials satisfying the Lorentz condition.

D Insert into the equations. Note that the operator
∂

∂t
commutes with the operators �, �· and �×.

I First assume that (A, V ) is given, and let g be a scalar field. If

Ṽ = V − ∂g

∂t
and Ã + �g,

then

�× Ã = �× A + �×�g = B + 0 = B,

and

−∂Ã
∂t

−�Ṽ = −∂A
∂t

−�V − ∂

∂t
� g + �

(
∂g

∂t

)
= E + 0 = E,

and we have proved that (A, V ) and (Ã, Ṽ ) are both a set of potentials for B and E.

1) It follows by a rearrangement that

V = Ṽ +
∂g

∂t
og A = Ã −�g,

where the set of potentials (Ã, Ṽ ) is given. By insertion into the Lorentz condition we get

0 = � · A +
∂V

∂t
= � · Ã −� · �g +

∂Ṽ

∂t
+

∂2g

∂t2
,

and we derive the requested differential equation

�2g − ∂2g

∂t2
= � · Ã +

∂Ṽ

∂t

where the right hand side is known. This is a classical inhomogeneous wave equation in three
space variables and one time variable.

2) Assume that only the vector field A is given. Put

Z(x, t) =
∫ t

t0

A(x, τ) dτ,
∂Z
∂t

= A, og V = −� ·Z.

Then

� · A +
∂V

∂t
= � · A − ∂

∂t
(� · Z) = � · A −� · ∂Z

∂t
= � · A −� ·A = 0,

and the Lorentz condition is fulfilled.

3) The set of potentials (A, V ) above defines (expressed by Z) the fields B and E by the formulæ

B = �× A = �× ∂Z
∂t

=
∂

∂t
(�× Z),

and

E = −∂A
∂t

−�V = −∂2Z
∂t2

+ �(� · Z).
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Example 5.4 On the figure we are given a normal cut in a double wire consisting of two identical,
parallel, conductive strip of breadth b and distance a. In the strips are flowing two opposite equally
distributed flows. Assuming that the two strips can be considered as infinitely thin and that the per-
meability μ has the same value everywhere one can show that the inductance of the wire per length L
is given by

L =
μ

πb2

∫ b

0

{∫ b

0

ln

√
a2 + (y − ỹ)2

|y − ỹ| dy

}
dỹ.

Consider this as an improper plane integral and find L.

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1

Figure 13: Double wire of distance a and length b.

A Improper plane integral.

D Split the integrand into two parts which each are integrated separately. There is no problem with
the first of these integrands. Considering the second one we smooth out the singularity by the first
integration.

0

0.5

1

1.5

2

0.5 1 1.5 2

Figure 14: The domain of integration B = [0, b] × [0, b] for b = 2 in the (y, ỹ)-plane.
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I Here, B = [0, b]× [0, b] in the (y, ỹ)-plane, and the integrand is not defined for ỹ = y. We shall first
find an integral of

ln

(√
a2 + (y − ỹ)2

|y − ỹ|

)
=

1
2

ln
(
a2 + (y − ỹ)2

)− 1
2

ln |y − ỹ|

for ỹ fixed and y �= ỹ.

1) When y ∈ [0, b], then 1
2 ln(a2 + (y − ỹ)2) has no singularity, so we get by a partial integration∫

1
2

ln
(
a2 + (y − ỹ)2

)
dy

=
1
2

(y − ỹ) ln
(
a2 + (y − ỹ)2

)− 1
2

∫
(y − ỹ) · 2(y − ỹ)

a2 + (y − ỹ)2
dy

=
1
2

(y − ỹ) ln
(
a2 + (y − ỹ)2

)− ∫
a2 + (y − ỹ)2 − a2

a2 + (y − ỹ)2
dy

=
1
2

(y − ỹ) ln
(
a2 + (y − ỹ)2

)− y + aArctan
(

y − ỹ

a

)
.
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2) When ỹ < y ≤ b, we get by a partial integration

−1
2

∫
ln |y − ỹ| dy = −1

2

∫
ln(y − ỹ) dy = −1

2
{(y − ỹ) ln(y − ỹ) − (y − ỹ)},

which due to the order of magnitudes can be extended by 0 for y = ỹ.

3) Similarly, we get for 0 ≤ y < ỹ that

−1
2

∫
ln |y − ỹ| dy = −1

2

∫
ln(ỹ − y) dy = −1

2
{(y − ỹ) ln(ỹ − y) − (y − ỹ)},

which is also extended by 0 for y = ỹ.

As a conclusion we get from 2) and 3) that

−1
2

∫
ln |y − ỹ| dy = −1

2
(y − ỹ) ln |y − ỹ| + 1

2
(y − ỹ),

which by a continuous extension can be interpreted as 0 for y = ỹ.

Thus, for fixed ỹ ∈ [0, b] we get for the inner integral,

∫ b

0

ln

(√
a2 + (y − ỹ)2

|y − ỹ|

)
dy

=
[
1
2
(y−ỹ) ln(a2+(y−ỹ)2)−y+aArctan

(
y−ỹ

a

)]b

y=0

+
[
−1

2
(y−ỹ) ln |y−ỹ|+ 1

2
(y−ỹ)

]b

y=0

= −1
2
(ỹ−b) ln((a2+(ỹ−b)2)+

1
2
ỹ ln(a2+ỹ2)−b −aArctan

(
ỹ−b

a

)
+aArctan

(
ỹ

a

)

+
1
2
(ỹ−b) ln(b−ỹ)− 1

2
ỹ ln ỹ+

1
2
(b−ỹ)+

1
2
ỹ2,

as the singularity has disappeared.

Now put t instead of ỹ. Then

L =
μ

πb2

∫ b

0

{
−1

2
(t − b) ln(a2 + (t − b)2)

}
dt +

μ

πb2

∫ b

0

1
2
t ln(a2 + t2) dt

+
μ

πb2

∫ b

0

1
2
(t − b) ln |t − b| dt − μ

πb2

∫ b

0

t ln t dt

− μ

πb2
a

∫ b

0

Arctan
(

t − b

a

)
dt +

μ

πb2
a

∫ b

0

Arctan
(

t

a

)
dt − μ

πb2

∫ b

0

1
2

b dt.

By some small calculations,∫
τ ln(k + τ) dτ =

1
2

∫
ln(k + τ2) dτ2 =

1
2
{
(k + τ2) ln(k + τ2) − (k + τ2)

}
,

∫
τ ln |τ | dτ =

1
2
τ2 ln |τ | − 1

2

∫
τ dτ =

1
2
τ2 ln |τ | − 1

4
τ2,
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∫
Arctan

(τ

a

)
dτ = τ ·Arctan

(τ

a

)
−
∫

τ

1 +
(τ

a

)2 · 1
a

dτ = τ Arctan
(τ

a

)
− a

2
ln
(

1 +
(τ

a

)2
)

,

hence by insertion and convenient choices of τ and k,

L =
μ

πb2

{[
−1

4
(a2+(t−b)2) ln(a2 + (t−b)2)+

1
4
(a2(t−b)2)

]b

t=0

+
[
1
4
(a2+t2) ln(a2+t2) − 1

4
(a2+t2)

]b

t=0

+
[
1
4
(t−b)2 ln(b−t) − 1

8
(t−b)2

]b

t=0

+
[
−1

4
t2 ln t +

1
8
t2
]b

t→0

+

[
−a(t−b)Arctan

(
t−b

a

)
+

a2

2
ln

(
1+

(
t−b

a

)2
)]b

t=0

+

[
atArctan

(
t

a

)
− a2

2
ln

{
1 +

(
t

a

)2
}]b

t=0

− 1
2
b2

⎫⎬
⎭

=
μ

πb2

{
−1

4
a2 ln(a2)+

1
4
a22+

1
4
(a2+b2) ln(a2+b2)

−1
4
(a2+b2)+

1
4
(a2+b2) ln(a2+b2)− 1

4
(a2+b2)− 1

4
b2 ln b+

1
8
b2− 1

4
b2 ln b

+
1
8
b2+abArctan

(
b

a

)
− a2

2
ln
(

a2+b2

a2

)

+abArctan
(

b

a

)
− a2

2
ln
(

a2+b2

a2

)
− 1

2
b2

}

=
μ

πb2

{
−1

2
a2 ln a+

1
2
(a2+b2) ln(a2+b2)− 1

2
b2 ln b−a2 ln(a2+b2)

+a2 ln a+2abArctan
(

b

a

)
+

1
4
a2− 1

2
(a2+b2)+

1
4
b2− 1

2
b2

}

=
μ

πb2

{
1
2
a2 ln a− 1

2
(a2−b2) ln(a2+b2)− 1

2
b2 ln b + 2abArctan

(
b

a

)
− 1

4
(a2−b2)

}

=
μ

4π

{
2
(a

b

)2

ln a−2 ln b+2
[
1 −

(a

b

)2
]

ln
[
1 +

(a

b

)2
]

+ 8
a

b
Arctan

(
b

a

)
+ 1 −

(a

b

)2
}

.
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Example 5.5 Change the problem of Example 5.4 in the following way: The two parallel strips are
placed in the same plane. We assume that the strips may be considered as infinitely thin, that the
flows are equally distributed and that the permeability μ is constant. The breadth is denoted by b and
the distance by a, cf. the figure. It can be proved that the inductance per length L of this wire is given
by

L =
μ

πb2

∫ 1
2 a+b

1
2 a

{∫ 1
2 a+b

1
2 a

ln
x + x̃

|x − x̃| dx

}
dx̃.

We consider this as an improper plane integral and want to find L. It will be convenient to apply the
quotient α =

a

b
and introduce the new variables (ξ, η) by putting

x =
1
2

a + bξ, x̃ =
1
2

a + bη.

–1

–0.5

0

0.5

1

–2 –1 1 2

Figure 15: The parallel strips are represented by the intervals [−2,−1] and [1, 2], corresponding to
a = 2 and b = 1.

A Improper plane integral and Electromagnetism.

D Sketch the (x, x̃)-domain and the (ξ, η)-domain and indicate where the integrand is not defined.
Then transform the improper integral into the (ξ, η)-space.

I It follows from
a

2
≤ x =

a

2
+ bξ ≤ a

2
+ b that 0 ≤ ξ ≤ 1, and similarly, 0 ≤ η ≤ 1. Furthermore,

x̃ = x corresponds to ξ = η. Finally,

x + x̃

|x − x̃| =

a

2
+ bξ +

a

2
+ bη∣∣∣a

2
+ bξ − a

2
− bη

∣∣∣ =
a + b(ξ + η)

b|ξ − η| =
α + ξ + η

|ξ − η| > 1,

thus the integrand is positive, and one does not need to be too careful in the computation of the
improper plane integral: Either we get +∞, or the right value.
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0

0.5

1

1.5

2

0.5 1 1.5 2

Figure 16: The domain in the (x, x̃)-space.

We find

L =
μ

πb2

∫
a
2

+
a

2
+ b

{∫ a
2 +b

a
2

ln
x + x̃

|x − x̃| dx

}
dx̃ =

μ

πb2

∫ 1

0

{∫ 1

0

ln
(

α + ξ + η

|ξ − η|
)

b dξ

}
b dη

=
μ

π

∫ 1

0

{∫ 1

0

ln(α + ξ + η) dξ

}
dη − μ

π

∫ 1

0

{∫ 1

0

ln |ξ − η| dξ

}
dη.
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0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.4 0.6 0.8 1 1.2

Figure 17: The domain in the (ξ, η)-plane.

Here,

∫ 1

0

{ln(α + ξ + η) dξ} dη =
∫ 1

0

[(α + ξ + η) ln(α + ξ + η) − (α + ξ + η)]1ξ=0dη

=
∫ 1

0

{(α + 1 + η) ln(α + 1 + η) − (α + η) ln(α + η) − 1} dη

=
[
1
2
(α+1+η)2 ln(α+1+η)− 1

4
(α+1+η)2 − 1

2
(α+η)2 ln(α+η)+

1
4
(α+η)2

]1

η=0

− 1

=
1
2
(α+2)2 ln(α+2)− 1

4
(α+2)2− 1

2
(α+1)2 ln(α+1)+

1
4
(α+1)2

−1
2
(α+1)2 ln(α+1)+

1
4
(α+1)2+

1
2
α2 lnα− 1

4
α2−1

=
1
2
(α+2)2 ln(α+2)−(α+1)2 ln(α+1)+

1
2
α2 lnα− 3

2
.

Then by a symmetry argument,

∫ 1

0

{∫ 1

0

ln |ξ − η| dξ

}
dη = 2

∫ 1

0

{∫ η

0

ln(η − ξ) dξ

}
dη

= 2
∫ 1

0

[(ξ − η) ln(η − ξ) − (ξ − η)]ξ→η
ξ=0 dη = 2

∫ 1

0

{η ln η + η} dη

= 2
[
η2

2
ln η − η2

4
+

η2

2

]1

η→0

= 2 · 1
4

=
1
2
.

Thus by insertion,

L =
μ

π

{
1
2
(α+2)2 ln(α+2)−(α+1)2 ln(α+1)− 3

2
− 1

2

}

=
μ

2π
{
(α+2)2 ln(α+2)−2(α+1)2 ln(α+1)+α2 lnα−4

}
.
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Example 5.6 For an (infinitely) long conductive cylinder with an equally distributed current I where
we assume that the permeability μ is constant in space, we get for the magnetic flux density that

B =
μI

2πa2
V,

where V is the vector field considered in Example 2.14. We have placed the coordinate system such
that the axis of the cylinder is the z-axis, and we describe the cylinder by � ≤ a. The magnetic field
intensity H is equal to B/μ.

1) Prove that Ampère’s law is fulfilled for the considered circles.

2) Show by comparison with Example 2.14 that a magnetic vector potential A ez is given by

A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μI

4π

{
1 −

(�

a

)2
}

, � < a,

μI

2π
ln

a

�
, � ≥ a.

A Distribution of a current.

D Analyze Ampère’s law. The last question is straightforward.

1) Let H denote the magnetic field intensity and I(F) the electric flow through any surface F . Then
by Ampère’s law,∮

∂F
H · t ds = I(F).

The flow is equally distributed, so the flux density is

J =

⎧⎪⎨
⎪⎩

μI

πa2
ez for � ≤ a,

0, for � ≥ a,

because the area of a cross section of the wire is πa2.

Now μ and I are constants, so when F is chosen as a circle ia a plane parallel to the xy-plane
and of centrum of the z-axis and of radius �, then

∮
K

H · t ds = I(F) =

⎧⎪⎪⎨
⎪⎪⎩

μI

πa2
π�2 = μI

(�

a

)2

, n̊ar � < a,

μI

πa2
πI, n̊ar � ≥ a.

We have for comparison,

∮
K

μI

2πa2
V · t ds =

{
μI

2πa2
2π�2 = μI

(�

a

)2

, when � < a,

μI, when � ≥ a.
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We conclude that

(12)
∮
K

(
H − μI

2πa2
V
)
· t ds = 0,

which is trivially satisfied for

H =
μI

2πa2
V.

If we assume that B = H, we are almost finished. However, see also the following remark.

Remark. Since K is chosen among a very special set of curves we can strictly speaking not
conclude the uniqueness. However, the existence is obvious. ♦

2) This is now straightforward.

Example 5.7 Consider a double wire, i.e. two parallel conductive cylinders. The direction of the
generator is parallel to the z-axis. We denote the two domains in which the two cylinders intersect
the (x, y)-plane by S1 and S2. We shall also assume the following:
The flow density J of the conductors is parallel to the z-axis, the flows are I and −I, and the perme-
ability μ is constant. It can be proved that we get a vector potential (0, 0, A) by adding contributions
from the two conductors and that the inductance per length L is given by

LI2 =
∫

S1

JAdS +
∫

S2

JAdS.

Show by applying the result of Example 5.6 and a mean value theorem for harmonic functions that
if we consider a double wire consisting of two equal circular cylinders of radius a and distance c (> 2a)
between their axis and supporting equally distributed currents, that we have

L =
μ

π

(
1
4

+ ln
c

a

)
.

A This is a fairly long example from Electromagnetism with a guideline.

D Sketch a figure. Add the vector potentials from Example 5.6 in order to find J . Finally, compute
L by showing that some convenient function is harmonic.

I Let S1 be the disc of centrum (0, 0), and S2 the disc of centrum (c, 0), both of radius a, where
c > 2a.

We have according to Example 5.6,

A1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μI

4π

{
1 − x2 + y2

a2

}
for x2 + y2 < a2,

μI

4π
ln
(

a2

x2 + y2

)
for x2 + y2 ≥ a2,

and

A2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−μI

4π

{
1 − (x − c)2 + y2

a2

}
for (x − c)2 + y2 < a2,

−μI

4π
ln
(

a2

(x − c)2 + y2

)
for (x − c)2 + y2 ≥ a2.
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–0.6

–0.4

–0.2

0

0.2

0.4

0.6

y

–0.5 0.5 1 1.5 2

x

Figure 18: Cross section of the double wire.

Furthermore, J1 =
I

πa2
and J2 = − I

πa2
.

Therefore,

L =
1
I2

∫
S1

JAdS +
1
I2

∫
S2

JAdS

=
1
I2

∫
S1

J1(A1 + A2)dS +
1
I2

∫
S2

J2(A1 + A2)dS

=
1
I2

· I

πa2

∫
S1

{
μI

4π

(
1− x2+y2

a2

)
−μI

4π
ln
(

a2

(x−c)2+y2

)}
dS

+
1
I2

(
− I

πa2

)∫
S2

{
−μI

4π

(
1− (x−c)2+y2

a2

)
+

μI

4π
ln
(

a2

x2+y2

)}
dS

=
1
I2

· I

πa2
· μI

4π

{
2
∫

S1

(
1− x2+y2

a2

)
dS

+
∫

S1

{
ln
(

(x−c)2+y2

a2

)
+ ln

(
(x+c =)2+y2

a2

)}
dS

}
.

The function f(x, y) = ln(s2 + y2) is harmonic. In fact,

∂f

∂x
=

2x
x2 + y2

and
∂f

∂y
=

2y
x2 + y2

,

thus

∂2f

∂x2
=

1
x2 + y2

− 4x2

(x2 + y2)2
=

2y2 − 2x2

(x2 + y2)2
and

∂2f

∂y2
=

2x2 − 2y2

(x2 + y2)2
,

where the latter follows by either repeating the computation above or by exploiting the symmetry,
i.e. by interchanging x and y. Then by adding the results,

∂2f

∂x2
+

∂2f

∂y2
= 0,
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and we have proved that f(x, y) is harmonic. Then

ln
(

(x ± c)2 + y2

a2

)

is also harmonic and we conclude that∫
S1

{
ln
(

(x − c)2 + y2

a2

)
+ ln

(
(x + c)2 + y2

a2

)}
dS

= area(S1) · 2 ln
(

c2

a2

)
= 4πa2 ln

( c

a

)
.

Furthermore,∫
S1

(
1 − x2 + y2

a2

)
dS = πa2 − 1

a2

∫ 2π

0

{∫ a

0

�2 · � d�

}
dϕ = πa2 − 1

a2
· 2π

(
a4

4

)
=

π

2
a2,

hence by insertion,

L =
1
I2

· I

πa2
· μI

4π

{
2 · π

2
a2 + 4πa2 ln

( c

a

)}
=

μ

4π

{
1 + 4 ln

( c

a

)}
=

μ

π

(
1
4

+ ln
c

a

)

as claimed above.
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Example 5.8 A conductive non-magnetic ball K of conductivity γ and radius a is rotating around a
diameter of the angular velocity � in an homogeneous magnetic field B, which is perpendicular to the
vector �. It can be proved that there is induced a current distribution in the ball with the density

J =
1
2

γ x × (B × �),

where x denotes the vector seen from the centrum of the ball. Find the Joule heat effect

P =
∫
K

J2

γ
dΩ.

A A space integral from Electromagnetism.

D Introduce a convenient coordinate system. Compute J and then J 2 = ‖J‖2. Finally, find P .

I Let K denote the ball of centrum (0, 0, 0), and assume that it is rotating around the z-axis. Thus
for (x, y, z) ∈ K \ {(0, 0, z)},

� =

(
− y√

x2 + y2
,

x√
x2 + y2

, 0

)
ω,

where we have put ω = ‖�‖. Hence, � is perpendicular to ez everywhere, Therefore, B = B ez,
and we have

B × � = ω

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

0 0 B

− y√
x2 + y2

x√
x2 + y2

0

∣∣∣∣∣∣∣∣∣∣∣
=

Bω√
x2 + y2

∣∣∣∣∣∣
ex ey

−y x

∣∣∣∣∣∣ =
Bω√

x2 + y2
(x, y, 0),

thus

J =
1
2

γ x × (B × �) =
1
2

γ · Bω√
x2 + y2

∣∣∣∣∣∣∣∣∣∣

ex ey ez

x y z

x y 0

∣∣∣∣∣∣∣∣∣∣

=
1
2

γBω√
x2 + y2

∣∣∣∣∣∣∣∣
ex ey ez

0 0 z
x y 0

∣∣∣∣∣∣∣∣
=

1
2

γBω√
x2 + y2

(−z)

∣∣∣∣∣∣
ex ey

x y

∣∣∣∣∣∣ = −1
2
· γBωz√

x2 + y2
(y,−x, 0).

Hence
J2

γ
=

‖J‖2

γ
=

1
4

γ B2ω2z2 · x2 + y2

x2 + y2
=

1
4

γ B2ω2z2,

and thence

P =
∫

K

J2

γ
dΩ =

1
4

γB2ω2

∫
K

z2 dΩ =
1
4

γB2ω2

∫ a

−a

z2(a2 − z2)π dz

=
1
2

γB2ω2π

∫ a

0

(a2z2 − z4) dz =
1
2

γ B2ω2π

{
a5

3
− a5

5

}
=

π

15
γ B2ω2a5.
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6 Miscellaneous

Example 6.1 The plane domain on the figure S is the union of three rectangles, and it is symmetric
with respect to the y-axis.

1. Find the barycentre for each of the three rectangles.

2. Find the barycentre B for S.

The dotted line is now used as the y-axis, and the x-axis is put through B.

3. Compute the axial moment

Ia =
∫

S

y2 dS.

4. Compute Ia and the area of S for a =
√

3 cm. The moment is given in four decimals.

A Barycentre and axial moment.

D Find the barycentre and compute the plane integral.

I Assume that S is covered homogeneously. Choose the y-axis as the axis of symmetry, and the lower
edge of the figure as the x-axis. Then all three barycentres lie on the y-axis.

1) Put S = S1∪S2∪S3, where S1 is the upper, S2 the middle and S3 the lower rectangle. Clearly,
of symmetric reasons,

y1 = a + 5a +
1
2
· 2a = 7a, area(S1) = 8a2,

y2 = a +
1
2
· 5a =

7
2

a, area(S2) = 5a2,

y3 =
1
2

a, area(S3) = 7a2,

where yi denotes the ordinate of the corresponding barycentre. We see in particular that

area(S) = (8 + 5 + 7)a2 = 20a2.

0

2

4

6

8

–3 –2 –1 1 2 3

Figure 19: The domain S where the dotted line is replaced by the y-axis and where the lower rectangle
has the dimensions 7×1, the rectangle in the middle has the dimensions 1×5 and the upper rectangle
has the dimensions 4 × 2. We have as usual put a = 1.
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2) Let y denote the ordinate of B. Then

y · area(S) = y1 · area(S1) + y2 · area(S2) + y3 · area(S3),

hence

y =
a

20

(
7 · 8 +

7
2
· 5 +

1
2
· 7
)

=
7a
20

(
8 +

5
2

+
1
2

)
=

77
20

a.

3) Now put the x-axis through B. Then

S1 = [−2a, 2a] ×
[
6a − 77

20
a, 8a − 77

20
a

]
= [−2a, 2a] ×

[
43
20

a,
83
20

a

]
,

S2 =
[
−1

2
a,

1
2

a

]
×
[
a − 77

20
a, 6a − 77

20
a

]
=
[
−1

2
a,

1
2

a

]
×
[
−57

20
a,

43
20

a

]
,

S3 =
[
−7

2
a,

7
2

a

]
×
[
−77

20
a,−57

20
a

]
,

and the axial moment becomes
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Ia =
∫

S

y2 dS =
∫

S1

y2 dS +
∫

S2

y2 dS +
∫

S3

y3 dS

= 4a
[
y3

3

] 83
20 a

43
20 a

+ a

[
y3

3

] 43
20 a

− 57
20 a

+ 7a
[
y3

3

]− 57
20 a

− 77
20 a

=
a4

3

{
4
(

83
20

)3

−4
(

43
20

)3

+
(

43
20

)3

+
(

57
20

)3

−7
(

57
20

)3

+7
(

77
20

)3
}

=
a4

3 · 203

{
4 · 833 − 4 · 433 + 433 + 573 − 7 · 573 + 7 · 773

}
=

a4

24000
{
4 · 833 + 7 · 773 − 3 · 433 − 6 · 573

}
=

4133200
24000

a4 =
10333

60
a4.

4) We get for a =
√

3 cm,

area(S) = 20 · 3 = 60 cm2,

and

Ia =
10333

60
· 9 =

30999
20

≈ 1550 cm4.

Example 6.2 Consider for every a ∈ R+ the set

La = {(x, y, z) | x2 + y2 ≤ az ≤ a2}.
1. Find the volume of La.

2. Compute the space integral
∫

La

(
x2 + y2 + z2

)
dΩ.

Let the vector field V : R
3 → R

3 be given by

V(x, y, z) =
(
y2x, z2y, x2z

)
.

3. Find the flux of V through the boundary ∂La.

Let Fa denote that part of ∂La, which is given by x2 + y2 = az and z ≤ a, and let n denote the
outward unit normal vector field of the surface Fa.

4. Find the flux∫
Fa

n · rot V dS.

Furthermore, let the vector field W : R
3 → R

3 be given by

W(x, y, z) =
(
xz2, yx2, zy2

)
,

and put U = V + W.

5. Show that the vector field U is a gradient field and find all its integrals.
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A Volume; mass; flux; gradient field.

D Sketch La. Then follow the guidelines. Apply Gauß’s theorem, and possibly also Stokes’s theorem.
Finally, show that U · dx is a total differential.

I 1) The set La is intersected at the height z ∈ [0, a] in a disc of area π(x2 + y2) = πaz, so we get by
the slicing method that

vol(La) =
∫ a

0

aπz dz =
π

2
a3.

0.2

0.4

0.6

0.8

1

–1

–0.5

0.5

1

y

–1

–0.5

0.5

1

x

Figure 20: The body La and its projection onto the (x, y)-plane for a = 1.

2) Put Ba = {(x, y) | x2 + y2 ≤ a2}. Then we get the integral∫
La

(x2 + y2 + z2) dΩ =
∫

Ba

{∫ a

x2+y2
a

(x2 + y2 + z2) dz

}
dx dy

=
∫

Ba

[
(x2 + y2)z +

1
3

z3

]a

z=(x2+y2)/a

dx dy

=
∫

Ba

{
a(x2 + y2) +

1
3

a3 − 1
a

(x2 + y2)2 − 1
3a3

(x2 + y2)3
}

dx dy

= 2π
∫ a

0

{
a�2 +

1
3

a3 − 1
a

�4 − 1
3a3

�6

}
� d�

= 2π
∫ a

0

{
1
3

a3� + a �3 − 1
a

�5 − 1
3a3

�7

}
d�

= 2π
{

1
6

a5 +
1
4

a5 − 1
6

a5 − 1
24

a5

}
= 2π · 5

24
a5 =

5π
12

a5.

3) Now, div V = y2 + z2 + x2, so by Gauß’s theorem and 2) the flux becomes

flux (∂La) =
∫

La

div V dΩ =
∫

La

(x2 + y2 + z2) dΩ =
5π
12

a5.
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4) By Stokes’s theorem we get∫
Fa

(rot V) · n dS =
∫

∂Fa

V · t ds,

where (cf. the figure)

∂Fa = {(x, y, a) | x2 + y2 = a2} = {(a cos t, a sin t, a) | t ∈ [0, 2π]}.

Hence along ∂Fa,

V(t) =
(
a3 cos t sin2 t, a3 sin t, a3 cos2 t

)
, t ∈ [0, 2π].

When we consult the figure we see that the orientation is pointing in the wrong direction, so
in order to obtain an outward normal we must multiply by a factor −1:∫

Fa

(rot V) · n dS = −
∫

∂Fa

V · t ds = −
∫ 2π

0

V · (−a sin t, a cos t, 0) dt

=
∫ 2π

0

{
+a4 cos t · sin3 t − a4 sin t · cos t + 0

}
dt =

[
a4

4
sin4 t − a4

2
sin2 t

]2π

0

= 0,

which shows that there has been no need to consider if the orientation was correct.

Alternatively it follows by a straightforward calculation that

rot V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

y2 z2y x2z

∣∣∣∣∣∣∣∣∣∣∣
= (−2yz,−2xz,−2xy).

By using the parametric description (x, y, z) =
(

u, v,
u2 + v2

a

)
of the surface we get

∂r
∂u

=
(

1, 0,
2u
a

)
,

∂r
∂v

=
(

0, 1,
2v
a

)
,

thus

N1(u, v) =

∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

1 0
2u
a

0 1
2v
a

∣∣∣∣∣∣∣∣∣∣∣∣
=
(
−2u

a
,−2v

a
, 1
)

.

Since n is the outward normal field of Fa, it follows by inspection of the figure that the z-
coordinate of n must be negative. We therefore choose

N(u, v) = −N1(u, v) =
1
a

(2u, 2v,−a).
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Finally, by using a symmetric argument in the computation of the integrals,

flux(Fa) =
∫

Ba

rot V · n dS = − 1
a2

∫
Ba

(
2v(u2+v2), 2u(u2+v2), 2auv

) · (−2u,−2v, a) du dv

=
1
a2

∫
Ba

{
4uv(u2 + v2) + 4uv(u2 + v2) − 2a2uv

}
du dv = 0.

5) First compute the sum

U = V + W =
(
y2x, z2y, x2z

)
+
(
xz2, yx2, zy2

)
=
(
x(y2 + z2), y(x2 + z2), z(x2 + y2)

)
.

This implies

U · dx = x(y2 + z2)dx + y(x2 + z2)dy + z(x2 + y2)dz

=
1
2
{
(y2 + z2)d

(
x2
)

+ (x2 + z2)d
(
y2
)

+ (x2 + y2)d
(
z2
)}

= d

{
1
2
(
x2y2 + x2z2 + y2z2

)}
,

and we conclude that U is a gradient field with its integrals given by

F (x, y, z) =
1
2
(
x2y2 + y2z2 + z2x2

)
+ C, C ∈ R.
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Example 6.3 Consider the vector field

V(x, y) =
(

xy2(1 + xy)
1 + x2y2

,
x2y(1 + xy)

1 + x2y2

)
, (x, y) ∈ R

2.

1) Show that V is a gradient field and find the integral F : R
2 → R, which is 0 at the point (0, 0).

2) Write F as a composite function:

F (x, y) = f(u), u = g(x, y).

3) Find the maximum and the minimum of F on the set

A = {(x, y) | |x| + |y| ≤ 2}

by e.g. finding the range g(A) by a geometric consideration.

A Gradient field, integral. Maximum and minimum.

D First find an integral. This is here done in three different ways.

I 1) First variant. We get by a small manipulation,

ω = V · dx =
xy2(1 + xy)

1 + x2y2
dx +

x2y(1 + xy)
1 + x2y2

dy

=
xy(1 + xy)
1 + x2y2

(y dx + x dy) =
1 + x2y2 + xy − 1

1 + x2 + y2
d(xy)

=
(

1 +
xy

1 + (xy)2
− 1

1 + (xy)2

)
d(xy)

= d

{
xy +

1
2

ln
(
1 + x2y2

)− Arctan(xy)
}

,

proving that V is a gradient field with the integrals

FC(x, y) = xy +
1
2

ln
(
1 + x2y2

)− Arctan(xy) + C, C ∈ R.

That particular integral which is 0 at (0, 0), corresponds to C = 0, thus

F (x, y) = xy +
1
2

ln
(
1 + x2y2

)− Arctan(xy).

Second variant. When be integrate along a broken line from (0, 0), we get

F (x, y) =
∫ x

0

0 dt +
∫ y

0

x2t(1 + xt)
1 + x2t2

dt =
∫ xy

0

u(1 + u)
1 + u2

du

=
∫ xy

0

1 + u2 + u − 1
1 + u2

du =
∫ xy

0

{
1 +

u

1 + u2
− 1

1 + u2

}
du

= xy +
1
2

ln
(
1 + x2y2

)− Arctan(xy).
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C We shall here test the candidate,

dF =
(

y +
1
2

2xy2

1 + x2y2
− 2xy2

1 + x2y2
− y

1 + x2y2

)
dx

+
(

x +
1
2

2x2y

1 + x2y2
− x

1 + x2y2

)
dy

=
y(1 + x2y2) + xy2 − y

1 + x2y2
dx +

x(1 + x2y2) + x2y − x

1 + x2y2
dy

=
xy2(1 + xy)

1 + x2y2
dx +

x2y(1 + xy)
1 + x2y2

dy = V · dx.

Third variant. We get for y arbitrary,

F (x, y) =
∫

xy2(1 + xy)
1 + x2y2

dx =
∫

xy(1 + xy)
1 + (xy)2

d(xy) = · · ·

= xy +
1
2

ln
(
1 + x2y2

)− Arctan(xy),

where the computations follow the same pattern as in the Second variant.
C Since dF = ω = V · dx, it follows that F is an integral, and as F (0, 0) = 0, the required

integral is precisely

F (x, y) = xy +
1
2

ln
(
1 + x2y2

)− Arctan(xy).

2) If we put u = g(x, y) = xy, then

F (x, y) = f(u) = u +
1
2

ln
(
1 + u2

)− Arctan u.

–2

–1

0

1

2

–2 –1 1 2

Figure 21: The domain A and the extremal curves u = xy = ±1.

3) Since F (x, y) is of class C∞, and A is closed and bounded, it follows from the second main
theorem for continuous functions that F has both a maximum and a minimum on A.
It follows from

f(u) = u +
1
2

ln
(
1 + u2

)− Arctan u
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that (cf. the integrand of the Second variant)

f ′(u) =
u(1 + u)
1 + u2

, u = xy,

which is zero for either u = 0 or u = −1. Furthermore, f is increasing for u ∈ ] − ∞,−1[,
decreasing for u ∈ ] − 1, 0[, and increasing for u ∈ ]0,+∞[.
For u = xy = 0 we get

F (x, y) = F (0, y) = F (x, 0) = 0.

For u = xy = −1 we get

f(−1) = −1 +
1
2

ln 2 +
π

4
> 0.

In A these correspond to the points (−1, 1) and (1,−1).
Let u = xy = +1. This corresponds to the points (1, 1) and (−1,−1) in A. In this case we get
the values

f(1) = 1 +
1
2

ln 2 − π

4
> f(−1).

We conclude from u ∈ [−1, 1] for (x, y) ∈ A that the maximum is

f(1, 1) = f(−1, 1) = 1 − π

4
+

1
2

ln 2,

and the minimum is

f(x, 0) = f(0, y) = 0.

Alternatively we may find the possible stationary points follows by an examination of the
boundary.
The possible stationary points satisfy V(x, y) = 0, thus

xy(1 + xy)
1 + x2y2

(y, x) = (0, 0).

We thus get three possibilities:

x = 0, y = 0, or xy−1.

In the interior of A we get

{(x, 0) | x ∈ ] − 2, 2[} and {(0, y) | y ∈ ] − 2, 2[},
because the hyperbola xy = −1 only intersects A in the boundary points (1, 1) and (−1, 1) in
∂A.

The boundary is symmetric with respect to (0, 0). As F (−x,−y) = F (x, y), it suffices to
consider the following boundary curves

x + y = 2, x ∈ [0, 2], and x − y = 2, x ∈ [0, 2].
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a) If x + y = 2, i.e. y = −x + 2, x ∈ [0, 2], we find the restriction
h1(x) = F (x, 2 − x)

= (2x − x2) +
1
2

ln
(
1 +

(
2x − x2

)2)− Arctan
(
2x − x2

)
where

h′
1(x) = 2 − 2x +

1
2
· 2(2x − x2) · (2 − 2x)

1 + (2x − x2)2
− 2 − 2x

1 + (2x − x2)2

=
2(1 − x)

1 + (2x − x2)2
· {1 + (2x − x2)2 + (2x − x2) − 1

}
=

2(1 − x)
1 + (2x − x2)2

· x(2 − x){x(2 − x) + 1}.
When x ∈ ]0, 2[ this is zero for x = 1, corresponding to

F (1, 1) = F (−1,−1) = 1 +
1
2

ln 2 − π

4
.
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b) If x − y = 2, i.e. y = x − 2, x ∈ [0, 2], then the restriction is given by

h2(x) = F (x, x − 2) = x2 − 2x +
1
2

ln
(
1 +

(
x2 − 2x

)2)− Arctan
(
x2 − 2x

)
where

h′
2(x) = 2x − 2 +

1
2
· 2(x2 − 2x) · (2x − 2)

1 + (x2 − 2x)2
− 2x − 2

1 + (x2 − 2x)2

=
2(x − 1)

1 + (x2 − 2x)2
{
1 + (x2 − 2x)2 + (x2 − 2x) − 1

}
=

2(x − 1)
1 + (x2 − 2x)2

· x(x − 2) · (x − 1)2.

In x ∈ ]0, 2[, this is zero for x = 1. We get for x = 1,

F (1,−1) = F (−1, 1) = −1 +
1
2

ln 2 +
π

4
.

Finally, we get in the stationary points,

F (0, y) = F (x, 0) = 0.

By a numerical comparison of the possible extremum values it follows that the maximum is

F (1, 1) = F (−1,−1) = 1 +
1
2

ln 2 − π

4
,

and the minimum is

F (x, 0) = F (0, y) = 0.

Example 6.4 Given a C1-function U(x), x ∈ A, where A � R
3, and consider a curve such that x is

a function in time t. The curve is determined by the differential equation

x′′(t) + �U(x(t)) = 0,

where ′ denotes differentiation with respect to t.
Prove by using the chain rule that

1
2
‖x′‖2 + U = C,

where C is a constant. (This differential equation is called a first integral of the above because the
order is reduced by 1).
In Mechanics, x(t) can be interpreted as the path of a particle in a field of the potential U ; then the
two differential equations express Newton’s second law and the energy theorem.

A Derivation of the first integral.

D When we analyze the desired result, we see that here occurs ‖x′‖2 = ‖x′‖ · ‖x′‖, which roughly
speaking means that we must have l “something like x2”. Hence, the idea must be to take the
dot product between the first differential equation and x′(t) follows by an integration over the
parameter interval I = [t0, t].
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I By following the analysis above we get

0 =
∫

I

{x′′(t) + �U(x(t))} · x′(t) dt =
∫

I

x′′(t) · x′(t) dt +
∫

I

�U(x(t)) · x′(t) dt

=
∫

I

3∑
i=1

x′′
i (t) c′i(t) dt +

∫
I

3∑
i=1

∂U

∂xi
· dxi

dt
dt =

3∑
i=1

1
2

[(x′
i(τ))]tτ=t0

+
∫ t

t0

dU(x(τ))

=
1
2
‖x′(t)‖ − c1 + U(x(t)) − c2,

hence by a rearrangement,

1
2
‖x′(t)‖2 + U(x(t)) = C (en konstant i t).
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